Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spin–orbit interactions of light

An Erratum to this article was published on 01 February 2017

This article has been updated

Abstract

Light carries both spin and orbital angular momentum. These dynamical properties are determined by the polarization and spatial degrees of freedom of light. Nano-optics, photonics and plasmonics tend to explore subwavelength scales and additional degrees of freedom of structured — that is, spatially inhomogeneous — optical fields. In such fields, spin and orbital properties become strongly coupled with each other. In this Review we cover the fundamental origins and important applications of the main spin–orbit interaction phenomena in optics. These include: spin-Hall effects in inhomogeneous media and at optical interfaces, spin-dependent effects in nonparaxial (focused or scattered) fields, spin-controlled shaping of light using anisotropic structured interfaces (metasurfaces) and robust spin-directional coupling via evanescent near fields. We show that spin–orbit interactions are inherent in all basic optical processes, and that they play a crucial role in modern optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-Hall effects for paraxial beams in inhomogeneous media.
Figure 2: SOI in nonparaxial light.
Figure 3: SOI induced by planar anisotropic and inhomogeneous structures.
Figure 4: Transverse spin in evanescent waves and spin-directional interfaces.

Similar content being viewed by others

Change history

  • 16 December 2016

    In the version of this Review Article originally published, the DOI in the header of the PDF was incorrect; it should have read 'DOI: 10.1038/NPHOTON.2015.201'. This has now been corrected in the online PDF; the HTML version was unaffected.

References

  1. Born, M. & Wolf, E. Principles of Optics (Pergamon, 2005).

    Google Scholar 

  2. Akhiezer, A. I. & Berestetskii, V. B. Quantum Electrodynamics (Interscience Publishers, 1965).

    MATH  Google Scholar 

  3. Liberman, V. S. & Zel'dovich, B. Y. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 46, 5199–5207 (1992).

    Article  ADS  Google Scholar 

  4. Bliokh, K. Y., Aiello, A. & Alonso, M. A. in The Angular Momentum of Light (eds. Andrews, D. L. & Babiker, M.) 174–245 (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  5. Hasman, E., Biener, G., Niv, A. & Kleiner, V. Space-variant polarization manipulation. Prog. Opt. 47, 215–289 (2005).

    Article  ADS  Google Scholar 

  6. Marrucci, L. et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001 (2011).

    Article  ADS  Google Scholar 

  7. Bliokh, K. Y. Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium. J. Opt. A 11, 094009 (2009).

    Article  ADS  Google Scholar 

  8. Bliokh, K. Y., Alonso, M. A., Ostrovskaya, E. A. & Aiello, A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. Rev. A 82, 063825 (2010).

    Article  ADS  Google Scholar 

  9. Mathur, H. Thomas precession, spin-orbit interaction, and Berry's phase. Phys. Rev. Lett. 67, 3325–3327 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bérard, A. & Mohrbach, H. Spin Hall effect and Berry phase of spinning particles. Phys. Lett. A 352, 190–195 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Rashba, E. I. Spin-orbit coupling and spin transport. Phys. E 34, 31–35 (2006).

    Article  Google Scholar 

  12. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bliokh, K. Y. & Bliokh, Y. P. Topological spin transport of photons: The optical Magnus effect and Berry phase. Phys. Lett. A 333, 181–186 (2004).

    Article  ADS  MATH  Google Scholar 

  14. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  ADS  Google Scholar 

  15. Bliokh, K. Y. & Bliokh, Y. P. Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett. 96, 073903 (2006).

    Article  ADS  Google Scholar 

  16. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  ADS  Google Scholar 

  17. Aiello, A. & Woerdman, J. P. Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts. Opt. Lett. 33, 1437–1439 (2008).

    Article  ADS  Google Scholar 

  18. Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nature Photon. 2, 748–753 (2008).

    Article  ADS  Google Scholar 

  19. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: An overview. J. Opt. 15, 014001 (2013).

    Article  ADS  Google Scholar 

  20. Gorodetski, Y. et al. Weak measurements of light chirality with a plasmonic slit. Phys. Rev. Lett. 109, 013901 (2012).

    Article  ADS  Google Scholar 

  21. Zhou, X., Xiao, Z., Luo, H. & Wen, S. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys. Rev. A 85, 043809 (2012).

    Article  ADS  Google Scholar 

  22. Zhou, X., Ling, X., Luo, H. & Wen, S. Identifying graphene layers via spin Hall effect of light. Appl. Phys. Lett. 101, 251602 (2012).

    Article  ADS  Google Scholar 

  23. Bokor, N., Iketaki, Y., Watanabe, T. & Fujii, M. Investigation of polarization effects for high-numerical-aperture first-order Laguerre–Gaussian beams by 2D scanning with a single fluorescent microbead. Opt. Express 13, 10440–10447 (2005).

    Article  ADS  Google Scholar 

  24. Dogariu, A. & Schwartz, C. Conservation of angular momentum of light in single scattering. Opt. Express 14, 8425–8433 (2006).

    Article  ADS  Google Scholar 

  25. Adachi, H., Akahoshi, S. & Miyakawa, K. Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light. Phys. Rev. A 75, 063409 (2007).

    Article  ADS  Google Scholar 

  26. Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

    Article  ADS  Google Scholar 

  27. Nieminen, T. A., Stilgoe, A. B., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A 10, 115005 (2008).

    Article  ADS  Google Scholar 

  28. Bomzon, Z. & Gu, M. Space-variant geometrical phases in focused cylindrical light beams. Opt. Lett. 32, 3017–3019 (2007).

    Article  ADS  Google Scholar 

  29. Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    Article  ADS  Google Scholar 

  30. Haefner, D., Sukhov, S. & Dogariu, A. Spin Hall effect of light in spherical geometry. Phys. Rev. Lett. 102, 123903 (2009).

    Article  ADS  Google Scholar 

  31. Bliokh, K. Y. et al. Spin-to-orbit angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 19, 26132–26149 (2011).

    Article  ADS  Google Scholar 

  32. Baranova, N. B., Savchenko, A. Y. & Zel'dovich, B. Y. Transverse shift of a focal spot due to switching of the sign of circular-polarization. JETP Lett. 59, 232–234 (1994).

    ADS  Google Scholar 

  33. Zel'dovich, B. Y., Kundikova, N. D. & Rogacheva, L. F. Observed transverse shift of a focal spot upon a change in the sign of circular polarization. JETP Lett. 59, 766–769 (1994).

    ADS  Google Scholar 

  34. Bliokh, K. Y., Gorodetski, Y., Kleiner, V. & Hasman, E. Coriolis effect in optics: Unified geometric phase and spin-Hall effect. Phys. Rev. Lett. 101, 030404 (2008).

    Article  ADS  Google Scholar 

  35. Rodríguez-Herrera, O. G., Lara, D., Bliokh, K. Y., Ostrovskaya, E. A. & Dainty, C. Optical nanoprobing via spin-orbit interaction of light. Phys. Rev. Lett. 104, 253601 (2010).

    Article  ADS  Google Scholar 

  36. Ling, X. et al. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. Appl. Phys. Lett. 105, 151101 (2014).

    Article  ADS  Google Scholar 

  37. Kruk, S. S. et al. Spin-polarized photon emission by resonant multipolar nanoantennas. ACS Photon. 1, 1218–1223 (2014).

    Article  Google Scholar 

  38. Van Enk, S. J. & Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt. 41, 963–977 (1994).

    Article  ADS  Google Scholar 

  39. Roy, B., Ghosh, N., Banerjee, A., Gupta, S. D. & Roy, S. Enhanced topological phase and spin Hall shifts in an optical trap. New J. Phys. 16, 083037 (2013).

    Article  Google Scholar 

  40. Hielscher, A. et al. Diffuse backscattering Mueller matrices of highly scattering media. Opt. Express 1, 441–453 (1997).

    Article  ADS  Google Scholar 

  41. Schwartz, C. & Dogariu, A. Backscattered polarization patterns, optical vortices, and the angular momentum of light. Opt. Lett. 31, 1121–1123 (2006).

    Article  ADS  Google Scholar 

  42. Gorodetski, Y., Shitrit, N., Bretner, I., Kleiner, V. & Hasman, E. Observation of optical spin symmetry breaking in nanoapertures. Nano Lett. 9, 3016–3019 (2009).

    Article  ADS  Google Scholar 

  43. Vuong, L. T., Adam, A. J. L., Brok, J. M., Planken, P. C. M. & Urbach, H. P. Electromagnetic spin-orbit interactions via scattering of subwavelength apertures. Phys. Rev. Lett. 104, 083903 (2010).

    Article  ADS  Google Scholar 

  44. Darsht, M. Y., Zel'dovich, B. Y., Kataevskaya, I. V. & Kundikova, N. D. Formation of an isolated wavefront dislocation. JETP 80, 817–821 (1995).

    ADS  Google Scholar 

  45. Ciattoni, A., Cincotti, G. & Palma, C. Angular momentum dynamics of a paraxial beam in a uniaxial crystal. Phys. Rev. E 67, 36618 (2003).

    Article  ADS  Google Scholar 

  46. Brasselet, E. et al. Dynamics of optical spin-orbit coupling in uniaxial crystals. Opt. Lett. 34, 1021–1023 (2009).

    Article  ADS  Google Scholar 

  47. Berry, M. V, Jeffrey, M. R. & Mansuripur, M. Orbital and spin angular momentum in conical diffraction. J. Opt. A 7, 685–690 (2005).

    Article  ADS  Google Scholar 

  48. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  ADS  Google Scholar 

  49. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002).

    Article  ADS  Google Scholar 

  50. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  ADS  Google Scholar 

  51. Brasselet, E., Murazawa, N., Misawa, H. & Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903 (2009).

    Article  ADS  Google Scholar 

  52. Shitrit, N., Bretner, I., Gorodetski, Y., Kleiner, V. & Hasman, E. Optical spin Hall effects in plasmonic chains. Nano Lett. 11, 2038–2042 (2011).

    Article  ADS  Google Scholar 

  53. Huang, L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2, e70 (2013).

    Article  Google Scholar 

  54. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  ADS  Google Scholar 

  55. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  57. Veksler, D. et al. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photon. 2, 661–667 (2015).

    Article  Google Scholar 

  58. Lee, S.-Y. et al. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett. 108, 213907 (2012).

    Article  ADS  Google Scholar 

  59. Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    Article  ADS  Google Scholar 

  60. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    Article  ADS  Google Scholar 

  61. O'Connor, D., Ginzburg, P., Rodríguez-Fortuño, F. J., Wurtz, G. A. & Zayats, A. V. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nature Commun. 5, 5327 (2014).

    Article  ADS  Google Scholar 

  62. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nature Commun. 5, 5713 (2014).

    Article  ADS  Google Scholar 

  63. Le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nature Commun. 6, 6695 (2015).

    Article  ADS  Google Scholar 

  64. Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nature Nanotechnol. 10, 775–778 (2015).

    Article  ADS  Google Scholar 

  65. Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nature Commun. 5, 3226 (2014).

    Article  ADS  Google Scholar 

  66. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801(R) (2012).

    Article  ADS  Google Scholar 

  67. Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nature Commun. 5, 3300 (2014).

    Article  ADS  Google Scholar 

  68. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nature Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  70. Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015).

    Article  ADS  Google Scholar 

  71. Sayrin, C. et al. Optical diode based on the chirality of guided photons. Preprint at http://arxiv.org/abs/1502.01549 (2015).

  72. Allen, L., Barnett, S. M. & Padgett, M. J. Optical Angular Momentum (IOP, 2003).

    Book  Google Scholar 

  73. Andrews, D. L. & Babiker, M. The Angular Momentum of Light (Cambridge Univ. Press, 2013).

    Google Scholar 

  74. Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Vinitskii, S. I., Derbov, V. L., Dubovik, V. M., Markovski, B. L. & Stepanovskii, Y. P. Topological phases in quantum mechanics and polarization optics. Uspekhi Fiz. Nauk 33, 403–428 (1990).

    MathSciNet  Google Scholar 

  76. Bhandari, R. Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997).

    Article  ADS  Google Scholar 

  77. Alexeyev, C. N. & Yavorsky, M. A. Topological phase evolving from the orbital angular momentum of 'coiled' quantum vortices. J. Opt. A 8, 752–758 (2006).

    Article  ADS  Google Scholar 

  78. Bliokh, K. Y. Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. Phys. Rev. Lett. 97, 043901 (2006).

    Article  ADS  Google Scholar 

  79. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Berrys phase in the relativistic theory of spinning particles. Phys. Rev. D 35, 2383–2387 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  80. Kravtsov, Y. A. & Orlov, Y. I. Geometrical Optics of Inhomogeneous Media (Springer, 1990).

    Book  Google Scholar 

  81. Duval, C., Horváth, Z. & Horváthy, P. A. Fermat principle for spinning light. Phys. Rev. D 74, 021701(R) (2006).

    Article  ADS  MathSciNet  Google Scholar 

  82. Chiao, R. Y. & Wu, Y. S. Manifestations of Berry's topological phase for the photon. Phys. Rev. Lett. 57, 933–936 (1986).

    Article  ADS  Google Scholar 

  83. Tomita, A. & Chiao, R. Observation of Berry's topological phase by use of an optical fiber. Phys. Rev. Lett. 57, 937–940 (1986).

    Article  ADS  Google Scholar 

  84. Murakami, S., Nagaosa, N. & Zhang, S.-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  ADS  Google Scholar 

  85. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  86. Bliokh, K. Y. & Bliokh, Y. P. Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet. Phys. Rev. E 75, 066609 (2007).

    Article  ADS  Google Scholar 

  87. Fedorov, F. I. To the theory of total reflection. J. Opt. 15, 014002 (2013).

    Article  ADS  Google Scholar 

  88. Imbert, C. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam. Phys. Rev. D 5, 787–796 (1972).

    Article  ADS  Google Scholar 

  89. Dennis, M. R. & Götte, J. B. The analogy between optical beam shifts and quantum weak measurements. New J. Phys. 14, 073013 (2012).

    Article  ADS  Google Scholar 

  90. Götte, J. B. & Dennis, M. R. Limits to superweak amplification of beam shifts. Opt. Lett. 38, 2295–2297 (2013).

    Article  ADS  Google Scholar 

  91. Player, M. A. Angular momentum balance and transverse shifts on reflection of light. J. Phys. A. Math. Gen. 20, 3667–3678 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  92. Fedoseyev, V. G. Conservation laws and transverse motion of energy on reflection and transmission of electromagnetic waves. J. Phys. A. Math. Gen. 21, 2045–2059 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  93. Aiello, A., Merano, M. & Woerdman, J. P. Duality between spatial and angular shift in optical reflection. Phys. Rev. A 80, 061801(R) (2009).

    Article  ADS  Google Scholar 

  94. Hermosa, N., Nugrowati, A. M., Aiello, A. & Woerdman, J. P. Spin Hall effect of light in metallic reflection. Opt. Lett. 36, 3200–3202 (2011).

    Article  ADS  Google Scholar 

  95. Qin, Y. et al. Spin Hall effect of reflected light at the air-uniaxial crystal interface. Opt. Express 18, 16832–16839 (2010).

    Article  ADS  Google Scholar 

  96. Ménard, J.-M., Mattacchione, A., van Driel, H., Hautmann, C. & Betz, M. Ultrafast optical imaging of the spin Hall effect of light in semiconductors. Phys. Rev. B 82, 045303 (2010).

    Article  ADS  Google Scholar 

  97. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  ADS  Google Scholar 

  98. Qin, Y., Li, Y., He, H. & Gong, Q. Measurement of spin Hall effect of reflected light. Opt. Lett. 34, 2551–2553 (2009).

    Article  ADS  Google Scholar 

  99. Luo, H., Zhou, X., Shu, W., Wen, S. & Fan, D. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection. Phys. Rev. A 84, 043806 (2011).

    Article  ADS  Google Scholar 

  100. Qin, Y. et al. Observation of the in-plane spin separation of light. Opt. Express 19, 9636–9645 (2011).

    Article  ADS  Google Scholar 

  101. Fedoseyev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Opt. Commun. 193, 9–18 (2001).

    Article  ADS  Google Scholar 

  102. Dasgupta, R. & Gupta, P. K. Experimental observation of spin-independent transverse shift of the centre of gravity of a reflected Laguerre–Gaussian light beam. Opt. Commun. 257, 91–96 (2006).

    Article  ADS  Google Scholar 

  103. Okuda, H. & Sasada, H. Huge transverse deformation in nonspecular reflection of a light beam possessing orbital angular momentum near critical incidence. Opt. Express 14, 8393–8402 (2006).

    Article  ADS  Google Scholar 

  104. Bliokh, K. Y., Shadrivov, I. V & Kivshar, Y. S. Goos–Hänchen and Imbert–Fedorov shifts of polarized vortex beams. Opt. Lett. 34, 389–391 (2009).

    Article  ADS  Google Scholar 

  105. Merano, M., Hermosa, N., Woerdman, J. P. & Aiello, A. How orbital angular momentum affects beam shifts in optical reflection. Phys. Rev. A 82, 023817 (2010).

    Article  ADS  Google Scholar 

  106. Dennis, M. R. & Götte, J. B. Topological aberration of optical vortex beams: Determining dielectric interfaces by optical singularity shifts. Phys. Rev. Lett. 109, 183903 (2012).

    Article  ADS  Google Scholar 

  107. Li, C. F. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys. Rev. A 80, 063814 (2009).

    Article  ADS  Google Scholar 

  108. Monteiro, P. B., Neto, P. A. M. & Nussenzveig, H. M. Angular momentum of focused beams: Beyond the paraxial approximation. Phys. Rev. A 79, 033830 (2009).

    Article  ADS  Google Scholar 

  109. Zhao, Y., Shapiro, D., McGloin, D., Chiu, D. T. & Marchesini, S. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam. Opt. Express 17, 23316–23322 (2009).

    Article  ADS  Google Scholar 

  110. Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A Math. Phys. Eng. Sci. 253, 358–379 (1959).

    Article  ADS  MATH  Google Scholar 

  111. O'Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    Article  ADS  Google Scholar 

  112. Garcés-Chávez, V. et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91, 093602 (2003).

    Article  ADS  Google Scholar 

  113. Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

    Article  ADS  Google Scholar 

  114. Zambrana-Puyalto, X., Vidal, X. & Molina-Terriza, G. Angular momentum-induced circular dichroism in non-chiral nanostructures. Nature Commun. 5, 4922 (2014).

    Article  ADS  Google Scholar 

  115. Moe, G. & Happer, W. Conservation of angular momentum for light propagating in a transparent anisotropic medium. J. Phys. B 10, 1191–1208 (2001).

    Article  ADS  Google Scholar 

  116. Gorodetski, Y., Nechayev, S., Kleiner, V. & Hasman, E. Plasmonic Aharonov–Bohm effect: Optical spin as the magnetic flux parameter. Phys. Rev. B 82, 125433 (2010).

    Article  ADS  Google Scholar 

  117. Lacoste, D., Rossetto, V., Jaillon, F. & Saint-Jalmes, H. Geometric depolarization in patterns formed by backscattered light. Opt. Lett. 29, 2040–2042 (2004).

    Article  ADS  Google Scholar 

  118. Kobayashi, H., Nonaka, K. & Kitano, M. Helical mode conversion using conical reflector. Opt. Express 20, 14064 (2012).

    Article  ADS  Google Scholar 

  119. Berry, M. V. Lateral and transverse shifts in reflected dipole radiation. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 2500–2519 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  120. Garbin, V. et al. Mie scattering distinguishes the topological charge of an optical vortex: A homage to Gustav Mie. New J. Phys. 11, 013046 (2009).

    Article  ADS  Google Scholar 

  121. Litchinitser, N. M. Structured light meets structured matter. Science 337, 1054–1055 (2012).

    Article  ADS  Google Scholar 

  122. Hasman, E., Bomzon, Z., Niv, A., Biener, G. & Kleiner, V. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures. Opt. Commun. 209, 45–54 (2002).

    Article  ADS  Google Scholar 

  123. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  124. Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 13, 4148–4151 (2013).

    Article  ADS  Google Scholar 

  125. Xiao, S., Zhong, F., Liu, H., Zhu, S. & Li, J. Flexible coherent control of plasmonic spin-Hall effect. Nature Commun. 6, 8360 (2015).

    Article  ADS  Google Scholar 

  126. Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).

    Article  ADS  Google Scholar 

  127. Slussarenko, S. et al. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express 19, 4085–4090 (2011).

    Article  ADS  Google Scholar 

  128. Khilo, N. A., Petrova, E. S. & Ryzhevich, A. A. Transformation of the order of Bessel beams in uniaxial crystals. Quantum Electron. 31, 85–89 (2001).

    Article  ADS  Google Scholar 

  129. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  ADS  Google Scholar 

  130. Hakobyan, D. & Brasselet, E. Left-handed optical radiation torque. Nature Photon. 8, 610–614 (2014).

    Article  ADS  Google Scholar 

  131. Yang, S., Chen, W., Nelson, R. L. & Zhan, Q. Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 34, 3047–3049 (2009).

    Article  ADS  Google Scholar 

  132. Kim, H. et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529–536 (2010).

    Article  ADS  Google Scholar 

  133. Dahan, N., Gorodetski, Y., Frischwasser, K., Kleiner, V. & Hasman, E. Geometric Doppler effect: Spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402 (2010).

    Article  ADS  Google Scholar 

  134. Rodríguez-Fortuño, F. J., Barber-Sanz, I., Puerto, D., Griol, A. & Martinez, A. Resolving light handedness with an on-chip silicon microdisk. ACS Photon. 1, 762–767 (2014).

    Article  Google Scholar 

  135. Young, A. B. et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett. 115, 153901 (2015).

    Article  ADS  Google Scholar 

  136. Lefier, Y. & Grosjean, T. Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides. Opt. Lett. 40, 2890–2893 (2015).

    Article  ADS  Google Scholar 

  137. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  138. Garetz, B. A. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate. Opt. Commun. 31, 1–3 (1979).

    Article  ADS  Google Scholar 

  139. Garetz, B. A. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981).

    Article  ADS  Google Scholar 

  140. Mashhoon, B. Neutron interferometry in a rotating frame of reference. Phys. Rev. Lett. 61, 2639–2642 (1988).

    Article  ADS  Google Scholar 

  141. Lipson, S. G. Berry's phase in optical interferometry: A simple derivation. Opt. Lett. 15, 154–155 (1990).

    Article  ADS  Google Scholar 

  142. Shitrit, N. et al. Spinoptical metamaterials: A novel class of metasurfaces. Opt. Photon. News 53 (December 2013).

Download references

Acknowledgements

This work was partially supported by the RIKEN iTHES Project, MURI Center for Dynamic Magneto-Optics (AFOSR grant no. FA9550-14-1-0040), JSPS-RFBR (contract no. 12-02-92100), Grant-in-Aid for Scientific Research (A), the Australian Research Council, EPSRC (UK), and the ERC iPLASMM project (321268). A.V.Z. acknowledges support from the Royal Society and the Wolfson Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.Y.B. wrote the major part of the text, with the input from F.J.R.F., F.N., and A.V.Z. F.J.R.F. created most of the figures with the input from K.Y.B. F.N. and A.V.Z. helped with the writing and contributed to discussions.

Corresponding author

Correspondence to K. Y. Bliokh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliokh, K., Rodríguez-Fortuño, F., Nori, F. et al. Spin–orbit interactions of light. Nature Photon 9, 796–808 (2015). https://doi.org/10.1038/nphoton.2015.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing