
dzone.com/research/continuousdelivery 2015 guide to continuous delivery 1

T H E G U I D E T O

CONTINUOUS
DELIVERY
RESEARCH PARTNER SPOTLIGHT

PRESENTED BY

SELECTIONS FROM THE GUIDE TO CONTINUOUS DELIVERY, VOL. II

http://www.dzone.com/research/continuousdelivery

 2015 guide to continuous delivery dzone.com/research/continuousdelivery 2

More than 900 IT professionals responded to
DZone’s 2015 Continuous Delivery Survey.
Here are the demographics for this survey:

•	 Developers and Engineers made up 65% of
the total respondents.

•	 62% of respondents come from large
organizations (100 or more employees) and
38% come from small organizations (under
100 employees).

•	 The majority of respondents are
headquartered in Europe (48%) or the US
(28%).

Division Between Dev and Ops is Closing
Continuous Delivery has always been positioned
as being part of the larger DevOps philosophy. To
implement this philosophy, many companies choose
to create a team that is focused on cross-compatible
skills for multiple disciplines between development

and operations. 35% of the
survey respondents

have an officially
designated DevOps
team (up 5% from
last year). For
organizations
without DevOps
teams, the division
of labor between
development and
operations teams
can become blurry.

For example, development teams were only slightly
more likely to perform code deployments to production
(45%) than operations teams (32%). 58% of respondents
that said both development and operations were both
responsible for production support.

More Professionals are Achieving Continuous
Delivery
The authors of the Continuous Delivery methodology
defined three key traits to determine when an
organization has fully implemented its practices [1].
The panels below shows how many survey respondents
have these traits in their systems:

Most organizations are somewhere in the process of
having adopted Continuous Delivery practices, but
not having fully achieved the primary principles. 36%
of those surveyed believe they have achieved CD for
some of their projects, and 14% believe they are doing
it in all of their projects. The combined statistic is that
50% of respondents have implemented Continuous
Delivery for some or all of their projects, which
represents a 9% growth in implementation over the
last year. To determine the amount of respondents
performing a “textbook” implementation,
respondents were filtered by the three key traits of
Continuous Delivery from the section above; 18% said
“yes” or “always” for all of the questions. While this
is smaller than the half of respondents who believe
they’ve implemented Continuous Delivery, this
number still represents a 10% growth compared to the
number of respondents who had achieved “textbook”
Continuous Delivery last year (8%).

Key
Research
Findings

WHO IS
RESPONSIBLE

FOR PRODUCTION
SUPPORT?

BOTH
DEVELOPMENT
& OPERATIONS

DEVELOPMENT

OPERATIONS

58%

22%

12%
DEVOPS

5%
3%OTHER

Is your software
confirmed to be in a

shippable state
every time a new

feature or patch is
added?

Do all of the
stakeholders have

immediate visibility
into the production
readiness of your

systems?

Does your team
perform push-button
deployments of any

desired version of your
software to any

environment
on-demand?

47% SAID USUALLY

24% SAID ALWAYS
31% SAID YES

43% SAID YES

27% SAID FOR
SOME SYSTEMS

50%
18% PERFORM THE TEXTBOOK

DEFINITION OF CD

BELIEVE THEY’VE
IMPLEMENTED CD

http://www.dzone.com/research/continuousdelivery

dzone.com/research/continuousdelivery 2015 guide to continuous delivery 3

Quick to Recover and Slow to Fail
Among other deployment and support metrics,
we checked into the Mean Time to Recover (MTTR)
and Mean Time Between Failure (MTBF) for our
respondents’ support and operations teams. The
survey indicated that recovery time after a failure
(MTTR) averaged close to 6 hours. The respondents
also reported that the average time between failures
(MTBF) is just over 4 hours, with 13% reporting.

Culture is Both Obstacle and Measure of
Success
The three biggest barriers to Continuous Delivery
adoption are company culture (64%), a lack of time
(63%), and team skillsets (45%). This is the second
time that company culture and a lack of time have
topped the list of reasons why IT professionals are
having problems adopting CD practices. The healthy
growth of certain
practices within a
company culture has
always been a major
focus within DevOps,
so it seems natural
that negative culture
would be a barrier
to implementation.
It’s not surprising
then that the
responsiveness
of DevOps culture
can also be used to
measure the success of Continuous Delivery. Cultural
metrics (41%) are the third most important measure
of success after support ticket frequency (46%) and
outage frequency (43%).

Continuous Delivery is Spreading to Other
Environments
Continuous Delivery isn’t a
hard sell for developers.
61% say that they have
already implemented
it for their application
build environments,
and only 6% have no
desire to do so. Database
and infrastructure
environments are still

lagging behind, but they’ve seen decent growth
over the last year. 30% of respondents have

implemented it for database environments
and 22% have implemented it for
infrastructure, which represents a combined
13% growth in these environments. Another

positive sign is that over half of all respondents
hope to implement CD for those environments.

The survey results do show some promising stats for
organizations taking the first steps toward complete
CD. 39% of respondents say they have extended their
CI practices to production deployments.

Continuous Delivery is Becoming the
Universal Standard
As popular as Continuous Delivery has become, it
would be a stretch to say it’s currently a universal
standard for software delivery, though it’s not that
hard to say that it’s well on its way. Respondents
largely praised Continuous
Delivery as a near universal
standard, with 20%
saying that they think
Continuous Delivery
is currently
a universal
standard, and
48% saying it
will soon become
the standard; that’s a
combined 68% of respondents. Even the negative
responses were relatively tame—20% of respondents
just don’t think CD practices are appropriate for every
environment. 12% said they just don’t think it’ll be a
universal standard.

[1] http://martinfowler.com/bliki/ContinuousDelivery.html

12%

MEAN TIME BETWEEN FAILURES (MTBF)

0-2 HOURS

3-7 HOURS

8-11 HOURS

12-24 HOURS

2-7 DAYS

1-3 WEEKS

1-3 MONTHS

4+ MONTHS

13%
5%
8%
16%
16%
16%
14%

64% COMPANY CULTURE

LACK OF TIME

TEAM SKILLSETS

63%
45%

MAIN BARRIERS TO ADOPTING CD

MEASURES OF DEVOPS EXCELLENCE

46% SUPPORT TICKET FREQUENCY

43% OUTAGE FREQUENCY

41% CULTURAL METRICS

MEAN TIME
TO RECOVERY

(MTTR)

5%
24+ HOURS

12-24 HOURS

8-11
HOURS

3-5
HOURS

0-2
HOURS

11%

11%

35%

38%

IS
CONTINUOUS
INTEGRATION

EXTENDED INTO THE
PRODUCTION
DEPLOYMENT

PROCESS?61%

39%

NO

YES

IS
CONTINUOUS

DELIVERY
BECOMING A
UNIVERSAL
STANDARD?

48%

20%

20%

IT WILL BE
STANDARD

12% IT WON’T BE
STANDARD

IT IS
STANDARD

IT’S NOT FOR EVERYONE

http://www.dzone.com/research/continuousdelivery
http://martinfowler.com/bliki/ContinuousDelivery.html

feature-
level tests

auto-
merge for
developer
branches

when using
Git Flow, etc.

production

rollback
and

redeploy
Chef3

Bamboo2

Jenkins1

ongoing
live

transaction
tests

post-
deployment

tests
SoapUI 3

Selenium 2

manual 1 smoke
tests

Chef3

JUnit2

Selenium1

you did it!

staging
and pre-

production

user
acceptance

testing
(UAT)

stubbed
and mocked

endpoints
of data

integration
tests

story-
level tests

Selenium3Cucumber 1

JUnit
2

BDD
framework

tests

Jenkins3

unit
tests

NUnit3

TestNG2

JUnit1

Cucumber3

JUnit2

Selenium1

showcases

SpecFlow3

JBehave2

Cucumber1

feature-
level testing

by the
client Cucumber3

Selenium2

manual1

JUnit 1

code
metrics

FindBugs 3

Cobertura 2

SonarQube 1

post-
deployment

tests
SoapUI 3

Selenium 2

manual 1

performance
tests

Gatling 3

LoadRunner 2

JMeter 1

SoapUI 3

EasyMock 2

Mockito 1

smoke
tests

Cucumber 3

JUnit 2

Selenium 1

syntax
check

SonarQube 3

Eclipse 2

Checkstyle 1

TestNG
2

network
tests

Ping3JMeter 1

Wireshark
2

component
 tests

NUnit3Mockito 1

TestNG

2
visual

(UI)
tests

Visual Studio 3

manual 2

Selenium 1

usability
tests

Cucumber 3

SoapUI 2

Selenium 1

exploratory
testing

automated
acceptance

testing

commit

capacity
tests

Gatling3

LoadRunner2

JMeter1

compile for compiled
languages

START

from dzone.com

REFERENCE KEY
2 31automated

execution
manual

execution
three most commonly used
tools used for this activity

automated trigger

PRESENTS

optional stepmanual trigger

01.

02.

03.

04.

05.

06.

Continuous Delivery advocates the creation of maximally
automated deployment pipelines.

This visualization of an optimally (but not entirely) automated
deployment pipeline shows how Continuous Delivery works.

Each stage (big circle) is composed of multiple activities (little circles).
Each activity can be automated or otherwise facilitated by various
(mostly open-source) tools. We surveyed our audience to see which
tools they used for which deployment-related activities. The three
most commonly used tools are listed next to each activity.

• Any long-running step, such as UAT, Pre-Production testing, or Exploratory
 Testing, can happen even after the change has already been deployed
 to Production.

• If significant issues are found in any long-running step, and the change has not
 been deployed to Production, the team should manually halt the pipeline.

• If significant issues are found in any long-running step, and the change has
 already been deployed to Production, the team should rollback Production to
 the last working release.

Diagrams are based on Jez Humble’s diagrams from the Continuous Delivery blog
(http://continuousdelivery.com/2010/09/deployment-pipeline-anti-patterns)

Special thanks to Matthew Skelton for helping build these diagrams.

 2015 guide to continuous delivery dzone.com/research/continuousdelivery 6

Source Control
B a se l i n e

▅▅ Early branching

▅▅ Branches tend to remain apart

Nov ic e
▅▅ Branches are used for isolating work

▅▅ Merges are common

I n t e r m e di at e
▅▅ Pre-tested commits

▅▅ Integration branch is pristine

A dva nc e d
▅▅ All commits are tied to tasks

▅▅ History used to rewrite features before
pushing to central repository

▅▅ Version control DB schema changes

E x pe rt
▅▅ Traceability analysis and release notes

auto-generated

▅▅ Commits are clean enough for the
master branch/trunk

Testing & QA
B a se l i n e

▅▅ Automatic unit testing with every build

▅▅ Code coverage is measured

Nov ic e
▅▅ Peer-reviews

▅▅ Mockups & proxies used

I n t e r m e di at e
▅▅ Periodic static code analysis

▅▅ Automated functional testing

A dva nc e d
▅▅ Integrated management and

maintenance of the test data

▅▅ Automated performance and security
tests in target environments

E x pe rt
▅▅ Automated acceptance testing

Build Process
B a se l i n e

▅▅ Official builds are not performed on
developers’ machines

▅▅ Self-service build or nightly build

Nov ic e
▅▅ System polls source control and builds

on commit

▅▅ Build artifacts are managed, some
manual scripts still used

I n t e r m e di at e
▅▅ Build artifacts are managed by purpose-

built tools, no manual scripts

▅▅ Dependencies are managed in a
repository

A dva nc e d
▅▅ Distributed builds on build cluster, can

be done in sequence

▅▅ Source control tells system when to
build, no polling

E x pe rt
▅▅ Build environments based on VMs

▅▅ Streams are never “broken”

▅▅ Gated commits

Visibility
B a se l i n e

▅▅ Build status notification is sent to committer

Nov ic e
▅▅ Latest build status is available to all

team members

I n t e r m e di at e
▅▅ Trend reports are automatically

generated from build server events

▅▅ People outside the team can subscribe to
build statuses

A dva nc e d
▅▅ Stakeholders have dashboards with

real-time product and dependency stats

E x pe rt
▅▅ Cross-team data mining and analysis

Deployment
B a se l i n e

▅▅ Fully scripted deployments

Nov ic e
▅▅ Push-button deployments to test

environments

I n t e r m e di at e
▅▅ Auto deploy to first test environment

▅▅ Standard deployments across all
environments

▅▅ Push-button deployments to production

A dva nc e d
▅▅ Automated deployments after tests pass

▅▅ Database deployments

▅▅ Multi-tier deployments

E x pe rt
▅▅ Ability to implement continuous

deployment

Continuous Delivery
Maturity Checklist

Check the boxes next to the practices you
currently perform to see your maturity
in each area of Continuous Delivery. Add
up your score at the end based on the
highest levels you checked.

POINT KEY:
Baseline 0 pts
Novice 1 pt

Intermediate 2 pts
Advanced 3 pts
Expert 4 pts

Source Control

Build Process

Testing & QA

Deployment

Visibility

TOTAL

0-7 Adequate 8-11 Average 12-14 Skilled

15-17 Adept 18-20 Master

Overall Maturity
Scorecard

For each check mark add the assigned number
of points and total them for each section:

Tally Your Scores:

Inspired by Chris Shayan and Eric Minick 			 Sources: chrisshayan.atlassian.net/wiki/display/my/2013/07/23/Continuous+Delivery+Matrix
					 		 ibmdw.net/urbancode/docs/continuous-delivery-maturity-model/

http://www.dzone.com/research/continuousdelivery
https://chrisshayan.atlassian.net/wiki/display/my/2013/07/23/Continuous%2BDelivery%2BMatrix
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/

dzone.com/research/continuousdelivery 2015 guide to continuous delivery 7

Functional and Unit Testing

Customers

OPEN SOURCE
Yes

PRICING
By number of VMs and test run minutes

Sauce Labs provides a complete testing platform for native, hybrid, and web apps, allowing users to run Selenium,
Appium, JS unit, and manual tests in any language on over 450 browser, OS, and platform combinations.

BLOG sauceio.com twitter @saucelabs WEBSITE saucelabs.com

Automated Testing Platform by Sauce Labs

case study HomeAway is a family of 50 websites and hundreds of applications that
provide the largest collection of vacation rental listings in the world. One of the challenges
they face is supporting the diverse set of devices and browsers on which people view their
apps. They also feel pressure to speed up delivery time. HomeAway leverages Sauce Labs for
production monitoring using an internal tool named Green Screen. Developers built Selenium
scripts to execute primary customer user flows through Sauce Labs against their family of
vacation sites. The objective is for these tests is to always be green; however, if a test fails,
they receive an alert from Sauce Labs and the company responds. As a result, HomeAway
has found the biggest value gained from using a combination of Sauce Labs infrastructure,
real-user monitoring, and running their Selenium and Appium frameworks continuously so that
quality isn’t compromised.

•	 Jenkins
•	 Travis CI
•	 CircleCI

•	 Bamboo
•	 TeamCity

•	 Cross-browser
testing

•	Mobile testing
•	 Selenium

•	 Appium
•	 JavaScript

testing
•	 Manual testing

 C# Java JavaScript Node.js

 Perl Ruby PHP Python
• Yahoo!

• Capital One

• Twitter

• Bank of America

• Mozilla

• Zendesk

• Salesforce

• Puppet Labs

CI TOOL SUPPORT

testing SUPPORT

language support

Automated testing plays a key role in successfully

implementing Continuous Delivery. We’ve witnessed enterprises
increasingly adopting fully automated delivery pipelines,
successfully accelerating release cycles, achieving consistently high
quality, and allowing their development teams to focus on writing
software rather than on the mechanics of delivering it.

An example of an idealized, modern software delivery pipeline
might look like the following:

•	 Plan user stories and manage issues with a project management

tool like JIRA.

•	 Collaborate on code via GitHub pull requests or a code review tool.

•	 Kick off a build in a CI system like Jenkins or Bamboo.

•	 Automatically run unit and functional tests with open source

testing tools like xUnit and other testing frameworks, and

automation tools like Selenium and Appium.

•	 Deploy with an IT automation tool like Puppet or Chef, or using a

PaaS.

•	 Monitor performance and impact on business metrics with

systems like New Relic and Mixpanel.

Different organizations make different tool choices, of course,and
there are usually a few pieces handled in a custom way due to
the need to work with legacy systems or specialized processes.
Whatever the challenge, software development teams have a
thriving ecosystem of tools and services available to support a
CD workflow. Indeed, it’s this abundance of tool choices that is
changing the equation and making Continuous Delivery possible
for more and more teams.

Automated testing itself has come a long way as a part of this
trend. Starting from early “test automation” tools designed
to make QA teams more efficient, automated testing is now a
critical part of automated delivery pipelines that are expected
to run through complete test suites many times a day, with
little tolerance for manual intervention, false failures, or
infrastructural reliability problems.

Errors or bottlenecks introduced by automated testing
infrastructure can break your build and block your deploy
pipeline, creating expensive delays for software developers.
Running automated tests rapidly and reliably is therefore critically
important to a successful Continuous Delivery process.

By providing a high-reliability, scalable automated testing
platform, we’ve been able to help enterprises sweep aside
the time-consuming and error-prone maintenance of virtual
machines and mobile devices, and allow them to instantly
provision additional testing resources on demand. And we’ve
prioritized fitting into the ecosystem of popular testing
frameworks, CI systems, and surrounding tools and services,
so that you can leverage existing investments and focus on
optimizing your CD pipeline.

Wr itten By

Steve Hazel, Cofounder, Chief Product Officer, Sauce Labs

Eliminating Roadblocks
on the Path to
Continuous Delivery

http://www.dzone.com/research/continuousdelivery
http://txt.couchware.com/medias/jump%3Fhid%3D3375%26cid%3D559%26mid%3D1481
http://txt.couchware.com/medias/jump%3Fhid%3D3377%26cid%3D559%26mid%3D1483
http://txt.couchware.com/medias/jump%3Fhid%3D3379%26cid%3D559%26mid%3D1485

 2015 guide to continuous delivery dzone.com/research/continuousdelivery 8

Maybe you can’t do a one-fi ngered push-up, but you can master speed and scale

with Sauce Labs. Optimized for the continuous integration and delivery workfl ows

of today and tomorrow, our reliable, secure cloud enables you to run your builds

in parallel, so you can get to market faster without sacrifi cing coverage.

A U T O M A T E D T E S T I N G

H A S S A U C E L A B S .

Try it for free at saucelabs.com and see

why these companies trust Sauce Labs.

M A R T I A L A R T S

H A S B R U C E L E E .

http://www.dzone.com/research/continuousdelivery

