
i

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Corda Enterprise - Automated Deployment, Security &

Monitoring

Prepared by

Gurpreet Singh (GP), Sergio Figueiredo

Program Manager, Partner CAT

gurpreet.singh@microsoft.com,

sergio.figueiredo@microsoft.com

Corda Enterprise Scale

Deployment on Microsoft

Azure

ii

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Table of Contents

1. Overview ... 3

2. Reference Implementation .. 4

2.1. Business Scenario ... 4

2.2. High-Level Architecture .. 5

3. Corda Node Deployment ... 9

3.1. What’s a Corda Node? .. 9

3.2. Which OS to use? ... 10

3.3. Can we use Docker? .. 10

3.4. CI/CD for Automated Deployment ... 11

4. Keys Management Using Azure Key Vault .. 13

4.1. Understanding Corda Keys and Certificates .. 13

4.2. Azure Key Vault (AKV) Integration .. 14

5. Securing Corda Network Communication ... 15

5.1. Solution #1 - VNET peering ... 15

5.2. Solution #2 - Site-to-Site VPN .. 17

5.3. Solution #3 - Nginx with DDoS Standard ... 17

5.4. How to Secure Access to the Corda Node ... 18

6. Monitoring and Telemetry ... 20

6.1. What’s provided out-of-the-box with Corda installation? ... 20

6.2. How to manage logs from Corda using Azure Services? ... 21

6.3. Introducing a Sidecar Pattern for telemetry .. 25

Page 3

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

1. Overview

This document explains how to automate the deployment and monitoring of Corda Enterprise

nodes on Microsoft Azure. We'll briefly explain the high-level architecture before describing in

detail the automated deployment of Corda nodes along with the design needed to support

monitoring and telemetry requirements of such a solution. This document does not go into the

details about the Corda Enterprise architecture/design, although we do provide links to the Corda

Enterprise documentation for reference wherever applicable. Major topics covered in this

document include –

▪ How to deploy Corda network on Microsoft Azure?

▪ How to integrate Corda with Azure Key Vault?

▪ How to secure Corda network communication?

▪ How to manage Monitoring and Telemetry on Microsoft Azure?

Page 4

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

2. Reference Implementation

2.1. Business Scenario

Any business scenario that involves peer-to-peer transactions in a non-trusted environment is a

viable candidate for Blockchain technology e.g. Trade Finance.

Trade Finance has enabled exchange of goods for centuries. However, the process is prone to

delays and frauds. It’s largely manual and lacks transparency. It is one of the key business scenario

for realizing the benefits of Blockchain, which can help reduce the disputes and errors and bring

in transparency by providing a single source of truth.

Note: In this document we do not explain the ‘Trade Finance’ process in detail. If needed, please

refer to the resource below:

https://en.wikipedia.org/wiki/Trade_finance

The diagram below highlights the benefits of using Blockchain for Trade Finance

https://en.wikipedia.org/wiki/Trade_finance

Page 5

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Benefits of using Blockchain/DLT:

▪ Real-time review: Financial documents linked and accessible through Blockchain are

reviewed and approved in real time, reducing the time it takes to initiate shipment

▪ Disintermediation: Banks facilitating trade finance through Blockchain do not require a

trusted intermediary to assume risk, eliminating the need for correspondent banks

▪ Decentralized contract execution: As contract terms are met, status is updated on

Blockchain in real time, reducing the time and headcount required to monitor the delivery of

goods

▪ Proof of ownership: The title available within Blockchain provides transparency into the

location and ownership of the goods

▪ Automated settlement and reduced transaction fees: contract terms executed via smart

contract eliminate the need for correspondent banks and additional transaction fees

2.2. High-Level Architecture

This section does not provide a step-by-step approach or detailed architecture for implementing

the Trade Finance scenario rather the intention is to highlight the products and services needed

to enable such a scenario on Microsoft Azure using Corda Enterprise.

The design follows the ‘Multiple Organizations, Private Consortium’ approach (refer here). It is a

true consortium setup where each organization/party has its own setup of Azure services (e.g. AD

tenant etc.), which is provisioned in its own Azure subscription/region. The Corda node running

in respective organization/party’s setup is enabled for peer-to-peer communication with other

Corda nodes within other organization/party’s setup.

A conceptual multi-member network architecture is illustrated below (refer here for more details):

https://azure.microsoft.com/en-us/blog/multi-member-consortium-blockchain-networks-on-azure/
https://azure.microsoft.com/en-us/blog/multi-member-consortium-blockchain-networks-on-azure/

Page 6

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Note: Please refer to below article for details about creating a networking topology for a

consortium

▪ https://azure.microsoft.com/en-us/blog/multi-member-consortium-blockchain-

networks-on-azure/

▪ https://blogs.msdn.microsoft.com/azurecat/2017/12/15/designing-scalable-blockchain-

networking-topology-in-azure/

The setup within each of the participating organization’s subscription, utilizes multiple Azure

services, and follows a tiered layout with subnet for each tier (e.g. Application, Web etc.) as

illustrated and described below.

https://azure.microsoft.com/en-us/blog/multi-member-consortium-blockchain-networks-on-azure/
https://azure.microsoft.com/en-us/blog/multi-member-consortium-blockchain-networks-on-azure/
https://blogs.msdn.microsoft.com/azurecat/2017/12/15/designing-scalable-blockchain-networking-topology-in-azure/
https://blogs.msdn.microsoft.com/azurecat/2017/12/15/designing-scalable-blockchain-networking-topology-in-azure/

Page 7

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Table below briefly explains the various Azure services along with their usage -

Description

1 Azure Subscription governs access to and use of Microsoft Azure services.

2 Resource Group provides a way to provision and manage a collection of Azure

services. Please refer here for more detail on Azure Resource Group

3 Application Access Tier constitutes of an Application Gateway. It is a dedicated virtual

appliance providing various capabilities like Web Application Firewall(WAF), HTTP

load balancing and SSL offloading etc. for the Web Application Tier, which hosts the

Web/API apps. Please refer here for more detail on Application Gateway.

4 Web Application Tier hosts the Azure App Services (Web app or API app). Please refer

here for more detail on Azure App Service.

https://docs.microsoft.com/en-us/azure/architecture/cloud-adoption-guide/adoption-intro/resource-group-explainer
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-introduction
https://azure.microsoft.com/en-us/services/app-service/

Page 8

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

5 API Tier hosts the Azure API Management service, which helps publish APIs providing

functions like security, version control, auditing etc. The solution relies on API to

connect various components like Corda node, UIs and off-ledger data stores. Please

refer here for more detail on Azure API Management.

6 Corda Tier hosts the virtual machines running containerized Corda images using

Docker. Please refer here for multiple ways to run Docker in Azure using Virtual

Machines.

7 Data Tier hosts Azure SQL Database for Off-Ledger data. Please refer here for more

detail on Azure SQL Database service.

8 Virtual Network is a logical isolation of the Azure Corda dedicated to a given

subscription enabling Azure resources to securely communicate with each other.

Please refer here for more detail on Azure Virtual Network.

9 Azure Key Vault stores the certificates and keys utilized by Apps, Azure Services and

Corda network. Please refer here for more detail on Azure Key Vault.

10 Log Analytics provides way to collect telemetry and other data from a variety of

sources. Please refer here for more detail on Azure Log Analytics.

11 Application Insights enables instrumentation for the custom code. Please refer here

for more detail on Azure Application Insights.

12 Azure Active Directory provides the Identity Management services. Please refer here

for more detail on Azure Active Directory.

https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/dockerextension
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-whatis
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview
https://azure.microsoft.com/en-us/services/application-insights/
https://docs.microsoft.com/en-us/azure/active-directory/

Page 9

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

3. Corda Node Deployment

This section describes automated deployment of Corda nodes using Azure Resource manager

(ARM) templates.

3.1. What’s a Corda Node?

A Corda network is composed of machines running nodes. A node is a JVM run-time environment

running the Corda software. The internals of the node are illustrated below -

 Credit: https://docs.corda.net/key-concepts-node.html

The core elements of the architecture are:

▪ A persistence layer for storing data

▪ A network interface for interacting with other nodes

▪ An RPC interface for interacting with the node’s owner

▪ A service hub for allowing the node’s flows to call upon the node’s other services

▪ A CorDapp interface and provider for extending the node by installing CorDapps

Further details can be found at - https://docs.corda.net/key-concepts-node.html

https://docs.corda.net/key-concepts-node.html
https://docs.corda.net/key-concepts-node.html

Page 10

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

3.2. Which OS to use?

Corda can be deployed on both Windows and Linux. It can also be containerized (Refer

https://docs.corda.net/head/deploying-a-node.html for more details)

When using Azure VM, as a best practice we should always use Azure Data Disks and at the

Operating System level run the Corda node from the logical data disk which can be configured to

aggregate 2 or more disks. (refer diagram below)

Resource
group

Virtual network

Subnet

Internet

N

I

C

Corda Node

Logs storage

account

Public IP

Address

Diagnostic

logs

OS

Data 1

Data 2

Temp

Physical SSD

on host

Managed

disks

In Windows we recommend the usage of Storage Spaces and Linux we have the following

guidance available to achieve maximum performance - https://docs.microsoft.com/en-

us/azure/virtual-machines/linux/optimization

3.3. Can we use Docker?

Corda Enterprise? has made available a docker image which allows to run inside a container and

can be found in the following repository - https://github.com/corda/corda-docker. Also, if we run

the Corda node in a container, we should also use volumes which are the preferred mechanism

https://docs.corda.net/head/deploying-a-node.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance#disks-guidance
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/optimization
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/optimization
https://github.com/corda/corda-docker

Page 11

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

for persisting data generated by and used by Docker containers:

https://docs.docker.com/storage/volumes/

3.4. CI/CD for Automated Deployment

We can use a continuous integration and continuous deployment (CI/CD) pipeline to automate

the deployment tasks and push changes to the Corda nodes automatically.

Visual Studio Team Services (VSTS) provides the CI/CD pipeline, starting with a Git repository for

managing your application source code and infrastructure code (ARM templates).

Note: Please refer to the resource below for more details on Continuous Integration and Delivery

using Visual Studio Team Services

https://www.visualstudio.com/team-services/continuous-integration/

The pipeline can use ARM templates to provision or update the infrastructure as necessary in each

subscription, and then deploy the updated build following a workflow as described in the

following diagram:

Application Insights
Corda Node

Visual Studio Team Services
Git

1

Visual Studio Team Services
CI

Visual Studio Team Services
CD

Visual Studio Team Services
Backlog

2

3 4 5 6

7

8

Container Registry

5a

https://docs.docker.com/storage/volumes/
https://www.visualstudio.com/team-services/continuous-integration/

Page 12

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Description

1
Change application source code

2
Commit Application Code and Azure Resource Manager (ARM) Template

3
Continuous integration triggers application build

4
Continuous deployment trigger orchestrates deployment of application artifacts

with environment specific parameters

5
Deployment or update of the VM

5a
Deployment or update of the Docker Container which runs the Corda node (either

with VSTS or Custom Script Extension). Please refer here for more details on

Custom Script Extension.

6
Application Insights collects and analyses health, telemetry, performance and

usage data

7
Review health, performance and usage information

8 Update backlog items

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/extensions-customscript

Page 13

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

4. Keys Management Using Azure Key Vault

It’s critical to be familiar with Corda key/certificate management concepts before understanding

the possibilities of integrating with Azure Key Vault.

4.1. Understanding Corda Keys and Certificates

A Corda network has four types of Certificate Authorities (CAs):

▪ Root Network CA

▪ Doorman CA

▪ Node CAs

▪ Legal Identity CAs

Corda’s X509Utilities (which uses Bouncy Castle) can be used to create public/private keypairs and

certificates. Included below are the steps needed to build the Certificate hierarchy –

1. Root Network CA – Generate keypair, create a self-signed certificate for the keypair

2. Doorman CA – Generate keypair, obtain a certificate for the keypair signed with the root

network CA key.

3. Node CA – For each node, generate keypair, obtain a certificate for the keypair signed with

the doorman CA key

Note: Please refer https://docs.corda.net/permissioning.html for more details.

Now that we understand the Corda certificate hierarchy and generation process, we can move

onto understanding how Azure Key Vault (AKV) can be integrated with it.

https://docs.corda.net/permissioning.html

Page 14

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

4.2. Azure Key Vault (AKV) Integration

Azure Key Vault (AKV) can be used to store the Keys/Certificates used in a Corda network (please

refer ‘Certificate Hierarchy’ in the section above for details). We can also create a certificate using

AKV with a known issuer, such as Digicert or GlobalCert (as explained in the next section).

However, it would be challenging to integrate AKV with the existing version of Corda as it requires

low-level understanding of the runtime services and enhancements to the source code. This would

be easier to implement in the upcoming release of Corda (expected later this year), where the

changes needed for the AKV integration would be included at the platform level.

4.2.1. How to create Certificate from within AKV?

The diagram below describes, at a high-level, the certificate creation process involving a given

application and AKV (step by step description of the process is available here).

As described in the previous section, it’s expected that Corda’s upcoming release would have

the necessary support to integrate with AKV.

https://docs.microsoft.com/en-us/rest/api/keyvault/create-a-certificate

Page 15

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

5. Securing Corda Network Communication

A Corda network is an authenticated peer-to-peer network of nodes, where each node is a Java

Virtual Machine run-time environment hosting Corda services and executing applications. All

communication between nodes is direct, with TLS-encrypted messages sent over AMQP/1.0.

Each Corda network has a Network Map Service that publishes the IP addresses through which

every node on the network can be reached, along with the identity certificates of those nodes and

the services they provide.

More information is available here: https://docs.corda.net/key-concepts-ecosystem.html

On Azure, a Corda network will constitute of corda nodes running within an Azure Virtual Network

(VNET) deployed across multiple Azure subscriptions owned by the respective consortium

participants. We have multiple options to interconnect them. These options take in account

subscription limits and best practices for each of the connectivity methods used to connect corda

network nodes across the different VNETs.

5.1. Solution #1 - VNET peering

The first option to interconnect a Corda network would be using VNET peering, which would allow

for higher number of transactions along with enabling better performance. VNET peering is

illustrated in the diagram below -

https://docs.corda.net/key-concepts-ecosystem.html

Page 16

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Corda Node

NSG

Virtual network

A
S
E

AMQP 1.0 over TLS

Corda Node

NSG

Virtual network

A
S
E

Corda Node

NSG

Virtual network

A
S
E

Subnet Subnet

Subnet

Peering

Currently, there are limits which need to be taken into account when it comes to the usage of

VNET peering per region. Nonetheless, if the goal performance and keeping configuration to a

minimum this is the best option. The limits per subscription for VNET peering are documented

here - https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

In terms of scalability in the future when a Corda network grows, the best option is either a mesh

topology or Service Chaining: https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-

peering-overview

In blockchain, we’ll typically have each member belonging to a different company, each with its

own subscription, Identity management requirements and restrictions. So peering works when all

subscriptions are associated with the same Azure AD tenant. If this is a constraint, then we should

look at solution #2.

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview

Page 17

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

5.2. Solution #2 - Site-to-Site VPN

In case each member of the consortium wants to have its own Azure AD tenant then the next

solution is setting up the network through either a VPN Gateway or an Network Virtualization

Appliance (NVA) which would establish the connections between both networks.

Please refer - https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-

vpngateways?toc=%2fazure%2fvirtual-network%2ftoc.json#V2V

Additional possibility which comes with Site-to-Site VPN is the option of having a hybrid

environment, where one could have a Corda node running on premises as illustrated below -

NSG

Virtual networkJumpbox

Gateway subnet

Management subnet

On-premises network

Gateway

ExpressRoute

Gateway

Microsoft

edge routers

Local edge

routers

ExpressRoute

circuit

VPN

Gateway

Corda Node

NSG

Corda subnet

Corda

5.3. Solution #3 - Nginx with DDoS Standard

The third solution is when customers have a public IP address which is associated with the Corda

node and we need to secure this endpoint with the means which we have available for Layers 3,

4. The Azure DDoS Standard Protection service protects your application from a comprehensive

set of network layer (Layer 3, 4) attacks.

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%2fazure%2fvirtual-network%2ftoc.json#V2V
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%2fazure%2fvirtual-network%2ftoc.json#V2V

Page 18

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

This service mitigates the following types of attacks:

• Volumetric attacks

• Protocol attacks

• Application layer attacks

More information can be found here:

https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview

We still need to protect the traffic which flows at Layer 7 though.

One option would be to go with an approach where we can run the Corda node application

coupled with Nginx. In which we would terminate the SSL tunnel:

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-secure-web-server

Container Network

Node Node Node

Corda VM

H
T
T
P

S

Public IP

Address

Azure Blob

Storage

Nginx

Application

Insights
Log Analytics

DDoS Standard

VNET

5.4. How to Secure Access to the Corda Node

When securing access, we should consider using a layered approach in which we include a remote

access option and use Azure logon restrictions to constrain source IP addresses such as Just-in-

Time(JIT) which is provided by Azure Security Center Standard.

https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-secure-web-server

Page 19

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Note:

Just in time virtual machine (VM) access can be used to lock down inbound traffic to Corda nodes

VMs, reducing exposure to attacks while providing easy access to connect to VMs when needed.

More information here:

https://docs.microsoft.com/en-us/azure/security/azure-security-management

We also absolutely need to think about the other mechanisms which are available to help secure

client connections to the virtual network.

Take for instance a stand-alone hardened workstation that does not connect to Azure through an

RD Gateway should use the SSTP-based point-to-site VPN to create the initial connection to the

Azure Virtual Network, and then establish the remote connection to the individual nodes from

with the VPN tunnel.

https://docs.microsoft.com/en-us/azure/security/azure-security-management#stand-alone-

hardened-workstation-for-management

https://docs.microsoft.com/en-us/azure/security/azure-security-management
https://docs.microsoft.com/en-us/azure/security/azure-security-management#stand-alone-hardened-workstation-for-management
https://docs.microsoft.com/en-us/azure/security/azure-security-management#stand-alone-hardened-workstation-for-management

Page 20

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

6. Monitoring and Telemetry

For monitoring and telemetry related requirements on Microsoft Azure, it’s recommended to

utilize a combination of Operations Management Suite(OMS), Log Analytics, Application Insights

and Azure Monitor.

For a conceptual view of the components that work together to provide monitoring of Azure

resources, please refer - https://docs.microsoft.com/en-us/azure/monitoring-and-

diagnostics/monitoring-overview

6.1. What’s provided out-of-the-box with Corda installation?

Corda node exports various metrics via the industry-standard JMX Infrastructure. However, as

highlighted here, as of Corda M11, Java serialization in the Corda node has been restricted,

meaning MBeans access via the JMX port will no longer work and Jolokia is one of the

recommended options.

Note: JMX (Java Management eXtensions) is a technology for monitoring and managing Java

applications. JMX uses objects called MBeans (Managed Beans) to expose data and resources

from the application.

Jolokia allows one to access the raw data and operations without connecting to the JMX port

directly.

For monitoring purposes, Corda core node exposes the specific metrics:

▪ net.corda:name=Attachments

▪ net.corda:name=Started,type=Flows

▪ net.corda:name=Finished,type=Flows

▪ net.corda:name=InFlight,type=Flows

▪ net.corda:name=Checkpointing Rate,type=Flows

The following JMX statistics are also exported:

▪ Apache Artemis metrics: queue information for P2P and RPC services

▪ JVM statistics: classloading, garbage collection, memory, runtime, threading, operating

system

▪ Hibernate statistics (only when node is started-up in devMode due to to expensive run-

time costs)

More information can be found here:

https://docs.corda.net/node-administration.html

https://github.com/corda/corda/blob/master/docs/source/node-administration.rst

https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.corda.net/node-administration.html
https://jolokia.org/
https://docs.corda.net/node-administration.html
https://github.com/corda/corda/blob/master/docs/source/node-administration.rst

Page 21

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

Corda logging is standard log4j2 and can be configured to trace additional information. These

logs are by default redirected to files in NODE_DIRECTORY/logs/ but they can also be sent to

syslog.

Telemetry from a Corda solution is available at two levels

▪ Corda core Services (e.g. Network Map etc.)

▪ Corda Distributed Applications (CorDapps)

6.2. How to manage logs from Corda using Azure Services?

The following diagram illustrates how we can manage the logs generated by Corda using Azure

Services:

From a JVM perspective we have 3 sources of logs that can feed into different components, which

we can configure to trace telemetry into either Log Analytics or Application Insights.

Inside the Virtual Machine or Container which runs the CorDapps, Corda Services and Java Virtual

Machine (JVM) we have three points of data collection which we need to look into:

1. CorDapps – here we will need to instrument the code with the Application Insights SDK

and also configure Log4j2. This involves user-defined CorDapps such as:

▪ Services

▪ Contracts

▪ States

▪ Web APIs

▪ Flows

As CorDapps involve custom code we can use Application Insights for instrumentation and

telemetry. Please refer to the article below for more details - https://docs.microsoft.com/en-

us/azure/application-insights/app-insights-java-trace-logs

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-trace-logs
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-trace-logs

Page 22

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

2. Corda Services - this refers to Corda core services which are highlighted in the internal

architecture outlined in section 3.1. We can leverage two options for tracing in this source

of logging:

▪ Log4j2 which we configure to trace into the OMS Linux Agent. The following

location has configuration specific guidance:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-

java-trace-logs

▪ JMX metrics exposed by Corda and send the required telemetry through

Jolokia – the node exports them over HTTP on the /monitoring/json HTTP

endpoint, using a program called Jolokia. Jolokia defines the JSON and REST

formats for accessing MBeans and provides client libraries to work with that

protocol as well.

3. Java Virtual Machine Metrics – these are JVM specific metrics which are exposed through

JMX and can be consumed by the Application Insights Agent. In the following location we

have guidance on how to configure the Application Insights Agent to collect this tracing:

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-eclipse

Having identified the sources of telemetry, we now have three collectors of telemetry as

highlighted in the diagram above which are:

1. Linux Operations Management Studio (OMS) agent

We can use Linux Operations Management Studio (OMS) agent to push logs from Corda

core services to Log Analytics. Included below are articles to understand the agent and

associated process better -

▪ Following link has the description of how the buffers of the OMS agent works on

Linux and which parameters we can tweak in order to adapt the ingestion rate with

what you expect from the Corda node:

https://docs.fluentd.org/v0.12/articles/buffer-plugin-overview

▪ The configuration file of the agent and more documentation can be found here -

https://github.com/Microsoft/OMS-Agent-for-Linux

▪ The Linux OMS agent is based on fluentD, so we can make sure that the right

format is displayed in Log Analytics by applying regex patterns which fit the desired

view: https://docs.fluentd.org/v0.12/articles/parser_syslog#message_format

https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-trace-logs
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-trace-logs
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-eclipse
https://docs.fluentd.org/v0.12/articles/buffer-plugin-overview
https://github.com/Microsoft/OMS-Agent-for-Linux
https://docs.fluentd.org/v0.12/articles/parser_syslog

Page 23

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

▪ For quick reference, the following would get the desired format:

https://github.com/Microsoft/OMS-Agent-for-Linux/blob/master/docs/Security-

Events-Preview-Configuration.md

2. HTTP Telemetry reader – this is where we can consume the information which is exported

by the Corda services.

With additional instrumented code (use app insights agent SDK and include link), we can

consume the information from Jolokia over HTTP:

https://github.com/Microsoft/ApplicationInsights-Java

One potential implementation for this consumer of logs would be using an instance of

TelemetryClient: https://docs.microsoft.com/en-us/azure/application-insights/app-

insights-api-custom-events-metrics

3. Application Insights Agent – provide full tracing facilities where we can collect telemetry

from instrumented code at the CordApps level and also with additional configuration we

can trace JMX counters which relate to the Java Virtual Machine (to name a few: Heap

Memory Usage, CPU, Garbage Collection).

This is one option that we can use to perform active probing when monitoring a Corda

node.

More details here: https://docs.microsoft.com/en-us/azure/application-insights/app-

insights-java-get-started

Finally, we have two points of telemetry ingestion which are Log Analytics and Application Insights.

With these two points, telemetry from both the Corda core services and Corda Distributed

Applications (CorDapps) can be centralized into a single dashboard. However, that dashboard

would be specific to the respective organization/party subscription, as the Application-

Insight/Log-Analytics account is at the subscription level.

A cross-subscription dashboard will need a custom implementation, where the logs will have to

be shipped over to a centralized location, collated and rendered on a single centralized

dashboard.

https://github.com/Microsoft/OMS-Agent-for-Linux/blob/master/docs/Security-Events-Preview-Configuration.md
https://github.com/Microsoft/OMS-Agent-for-Linux/blob/master/docs/Security-Events-Preview-Configuration.md
https://github.com/Microsoft/ApplicationInsights-Java
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-get-started
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-java-get-started

Page 24

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

1. Log Analytics - If we’re looking to Log Analytics as source of Alerts for when we’re

monitoring the Corda node, we should be aware that data ingestion might have associated

latency or simply take time to be consumed.

Following are the items to consider when going the Log Analytics route -

▪ Data collection frequency: OMS has a solution for monitoring containers, where the

data collection frequency is 3 minutes - https://docs.microsoft.com/en-

us/azure/log-analytics/log-analytics-add-solutions#data-collection-details. This

will be one of the points to keep in mind when looking into the Log Analytics

workspace and query results.

▪ Configuration of buffering in the Linux agent: Given that OMS agent is based on

fluentD, here we have the description of how the buffers of the OMS agent works

on Linux and which parameters we can tweak in order to adapt the ingestion rate

with what you expect from the Corda node application:

https://docs.fluentd.org/v0.12/articles/buffer-plugin-overview

You can find the configuration file of the agent and more documentation here -

https://github.com/Microsoft/OMS-Agent-for-Linux

▪ Ingestion of data: typically takes a few minutes to an hour. After the service

processes the data, you can view it in Log Analytics. More information may be

found here - https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-

add-solutions#data-collection-details

 More specifically, there's a delay when ingesting data which is a combination of

data collection frequency and the time that data takes to be ingested into Log

Analytics -

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-alerts

2. Application Insights – when leveraging Application Insights completely, we will be able to

automatically detect performance anomalies, correlate telemetry and have the ability to

trace the request flow from client (application, browser) through all the services involved in

the processing at the subscription level (i.e. between the web application which will interact

with the CordApps running in the Corda node).

More details here: https://docs.microsoft.com/en-us/azure/application-insights/app-

insights-overview

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-add-solutions#data-collection-details
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-add-solutions#data-collection-details
https://docs.fluentd.org/v0.12/articles/buffer-plugin-overview
https://github.com/Microsoft/OMS-Agent-for-Linux
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-add-solutions#data-collection-details
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-add-solutions#data-collection-details
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Flog-analytics%2Flog-analytics-alerts&data=04%7C01%7CSergio.Figueiredo%40microsoft.com%7C3c1a979ec1414cc730ff08d579598cb8%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636548347889277286%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwifQ%3D%3D%7C-1&sdata=71p4tXLdvvIV5QiGeS7tc2riEES74NUikWIECASOe38%3D&reserved=0
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-overview

Page 25

Corda Enterprise Scale Deployment on Microsoft Azure, Version 1

Prepared by Gurpreet Singh (GP), Sergio Figueiredo

6.3. Introducing Sidecar Pattern for telemetry

Given that we can have multiple roles running in the same node, this allows room to introduce a

known pattern which we can use for telemetry purposes as shown below:

Container Network

Node Node Node

Corda VM

H
T
T
P

S

App

Insights/

Log

Analytics

Azure

Key Vault

Azure Blob

Storage

Nginx

Log Saver

The pattern which can use to monitor the Corda node application is a sidecar pattern. We can

achieve this by pairing the Corda node application, which can run either in an IaaS Virtual Machine

instance or in a container, next to another instance where we run the “log saver agent” which will

then send syslog information into Log Analytics.

More information about this pattern can be found here:

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

This way we’ll benefit from the separation of both units and fully utilize the resources that each

may need without interfering. Configuring it this way, we’ll also have one container packaged just

for logging which makes it easier to divide configuration tasks such as parsing rules which need

to be applied for the OMS agent, redeploy it if needed and without affecting Corda.

In the event of a failure in the log saver container, we’ll still have the application healthy.

Additionally, as we scale more containers per different role we’ll be able to have a single container

which can be used by all the other containers for log saving.

https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

