Skip to main content

Influence of Surface Morphology on Fatigue and Tribological Behavior of TRIP/TWIP Steels

  • Chapter
  • First Online:
Component Surfaces

Abstract

Opposite to widely used austenitic stainless steels (see Chapter “Influence of Manufacturing and Load Conditions on the Phase Transformation and Fatigue of Austenitic Stainless Steels”), high manganese Transformation Induced Plasticity (TRIP)/TWinning Induced Plasticity (TWIP) steels are not corrosion resistant. However, these steels undergo intensive research work, because of their unique combination of high strength and high ductility. First fully austenitic TWIP steels are already industrially available. Parallel to research presented elsewhere on TRIP/TWIP steels as a bulk material, the surface morphology on the micro scale was investigated in this work. The possibility to manufacture different surface morphologies as well as the change in the topography, microstructure, and mechanical properties of near-surface regions up to 10 \(\upmu \)m depth after conventional milling, micro milling as well as lapping was investigated in detail. Based on that, the influence of different surface morphologies on the cyclic deformation behavior and fatigue life in LCF, HCF, and VHCF regime as well as tribological properties of austenitic TRIP/TWIP steels are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott R, Coley K, Mostaghel S, Barati M (2018) Review of manganese processing for production of TRIP/TWIP steels, part 1: current practice and processing fundamentals. JOM 70(5):680–690. ISSN: 1047-4838. https://doi.org/10.1007/s11837-018-2769-4

  2. Cai ZH, Ding H, Xue X, Xin QB (2013) Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A 560:388–395. ISSN: 09215093. https://doi.org/10.1016/j.msea.2012.09.083

  3. Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr Opin Solid State Mater Sci 15(4):141–168. https://doi.org/10.1016/j.cossms.2011.04.002

  4. Bleck W, Brühl F, Ma Y, Sasse C (2019) Materials and processes for the third-generation advanced high-strength steels. BHM Berg-und Hüttenmännische Monatshefte 164(11):466–474. https://doi.org/10.1007/s00501-019-00904-y

  5. de Cooman BC, Kwon O, Chin K-G (2012) State-of-the-knowledge on TWIP steel. Mater Sci Technol 28(5):513–527. ISSN: 0267-0836. https://doi.org/10.1179/1743284711Y.0000000095

  6. Grässel O, Krüger L, Frommeyer G, Meyer L (2000) High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development—properties—application. International Journal of Plasticity 16(10–11):1391–1409. ISSN:07496419. https://doi.org/10.1016/S0749-6419(00)00015-2

  7. Grässel O, Frommeyer G, Derder C, Hofmann H (1997) Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels”. In: Le Journal de Physique IV 07(C5):C5-383–C5-388. ISSN: 1155-4339. https://doi.org/10.1051/jp4:1997560

  8. Bouaziz O, Allain S, Scott C (2008) Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater 58(6):484–487. https://doi.org/10.1016/j.scriptamat.2007.10.050

  9. Gil Sevillano J, de las Cuevas F (2012) Internal stresses and the mechanism of work hardening in twinning-induced plasticity steels. Scr Mater 66(12):978–981. ISSN: 13596462. https://doi.org/10.1016/j.scriptamat.2012.02.019

  10. Klein MW, Blinn B, Smaga M, Beck T (2020) High cycle fatigue behavior of high-Mn TWIP steel with different surface morphologies. Int J Fatigue 134:105499. ISSN: 01421123. https://doi.org/10.1016/j.ijfatigue.2020.105499

  11. Tian YZ, Bai Y, Zhao LJ, Gao S, Yang HK, Shibata A, Zhang ZF, Tsuji N (2017) A novel ultrafine-grained Fe 22Mn 0.6C TWIP steel with superior strength and ductility. Mater Charact 126:74–80. ISSN: 10445803. https://doi.org/10.1016/j.matchar.2016.12.026

  12. Curtze S, Kuokkala V-T, Oikari A, Talonen J, Hänninen H (2011) Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater 59(3):1068–1076. ISSN: 13596454. https://doi.org/10.1016/j.actamat.2010.10.037

  13. Smaga M, Beck T, Arrabiyeh P, Reichenbach I, Kirsch B, Aurich JC (2015) Characterization of micro machined surface from TRIP/TWIP steels. MATEC Web Conf 33:07004. https://doi.org/10.1051/matecconf/20153307004

  14. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromilling. CIRP Annals 55(2):745–768. https://doi.org/10.1016/j.cirp.2006.10.006

  15. Kieren-Ehses S, Böhme L, Morales-Rivas L, Lösch J, Kirsch B, Kerscher E, Kopnarski M, Aurich JC (2021) The influence of the crystallographic orientation when micro machining commercially pure titanium: a size effect. Precis Eng 72:158–171. https://doi.org/10.1016/j.precisioneng.2021.04.007

    Article  Google Scholar 

  16. Klein M, Smaga M, Beck T (2018) Surface morphology and its influence on cyclic deformation behavior of high-Mn TWIP steel. Metals 8:832. https://doi.org/10.3390/met8100832

  17. Klein M, Smaga M, Beck T (2018) Surface morphology and its influence on cyclic deformation behavior of high-Mn TWIP steel. Metals 8(10):832. https://doi.org/10.3390/met8100832

  18. Schilke M, Ahlström J, Karlsson B (2010) Low cycle fatigue and deformation behaviour of austenitic manganese steel in rolled and in as-cast conditions. Procedia Eng 2(1):623–628. ISSN: 18777058. https://doi.org/10.1016/j.proeng.2010.03.067

  19. Wu Y, Tang D, Jiang H, Mi Z, Xue Y, Wu H, Wu Y-X, Tang D, Jiang H-T, Mi Z-l, Xue Y, Wu H-P (2014) Low cycle fatigue behavior and deformation mechanism of TWIP steel. J Iron Steel Res Int 21(3):352–358. ISSN: 1006-706X. https://doi.org/10.1016/S1006-706X(14)60054-6

  20. Shao CW, Zhang P, Liu R, Zhang ZJ, Pang JC, Zhang ZF (2016) Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater 103:781–795. ISSN: 13596454. https://doi.org/10.1016/j.actamat.2015.11.015

  21. Shao CW, Zhang P, Zhu YK, Zhang ZJ, Pang JC, Zhang ZF (2017) Improvement of low-cycle fatigue resistance in TWIP steel by regulating the grain size and distribution. Acta Mater 134:128–142. ISSN: 13596454. https://doi.org/10.1016/j.actamat.2017.05.004

  22. Rüsing CJ, Lambers H-G, Lackmann J, Frehn A, Nagel M, Schaper M, Maier HJ, Niendorf T (2015) Property optimization for TWIP steels–effect of pre-deformation temperature on fatigue properties. Mater Today Proc 2:S681–S685. ISSN: 22147853. https://doi.org/10.1016/j.matpr.2015.07.375

  23. Rüsing CJ, Niendorf T, Frehn A, Maier HJ, Rüsing CJ, Niendorf T, Frehn A, Maier HJ (2014) Low-cycle fatigue behavior of TWIP steel—effect of grain size. Adv Mater Res 891–892:1603–1608. https://doi.org/10.4028/www.scientific.net/AMR.891-892.1603

    Article  CAS  Google Scholar 

  24. Niendorf T, Lotze C, Canadinc D, Frehn A, Maier HJ (2009) The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel. Mater Sci Eng A 499(1–2):518–524. ISSN: 09215093. https://doi.org/10.1016/j.msea.2008.09.033

  25. Klein MW, Smaga M, Beck T, Klein MW, Smaga M, Beck T (2018) Influence of the surface morphology on the cyclic deformation behavior of HSDr 600 steel. MATEC Web Conf 165:06010. https://doi.org/10.1051/matecconf/201816506010

  26. Byun TS (2003) On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater 51(11):3063–3071. https://doi.org/10.1016/S1359-6454(03)00117-4

  27. Klein MW (2022) Einfluss der Oberflächenmorphologie auf das Verformungsund Schädigungsverhalten von hochmanganhaltigem TWIP Stahl. PhD thesis, Kaiserslautern: TU Kaiserslautern

    Google Scholar 

  28. Hamada AS, Karjalainen LP (2010) High-cycle fatigue behavior of ultrafinegrained austenitic stainless and TWIP steels. Mater Sci Eng A 527(21–22):5715–5722. ISSN: 09215093. https://doi.org/10.1016/j.msea.2010.05.035

  29. Hamada AS, Karjalainen LP, Puustinen J (2009) Fatigue behavior of high-Mn TWIP steels. Mater Sci Eng A 517(1–2):68–77. ISSN: 09215093. https://doi.org/10.1016/j.msea.2009.03.039

  30. Hamada AS, Karjalainen LP, Ferraiuolo A, Hamada AS, KarjalainenLP, Ferraiuolo A, Gil Sevillano J, de las Cuevas F, Pratolongo G, Reis M (2010) Hamada fatigue behavior of four high-Mn twinning induced plasticity effect steels fatigue behavior of four high-Mn twinning induced plasticity effect steels. Metall Mater Trans A 41(5):1102–1108. ISSN: 1073-5623. https://doi.org/10.1007/s11661-010-0193-7

  31. Seo W, Jeong D, Sung H, Kim S (2017) Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110K. Mater Charact 124:65–72. ISSN: 10445803. https://doi.org/10.1016/j.matchar.2016.12.001

  32. Daniel T, Smaga M, Beck T (2022) Cyclic deformation behavior of metastable austenitic stainless steel AISI 347 in the VHCF regime at ambient temperature and 300\(^\circ \)C. Int J Fatigue 156:106632. https://doi.org/10.1016/j.ijfatigue.2021.106632

  33. Jost N, Schmidt I (1986) Friction-induced martensitic transformation in austenitic manganese steels. Wear 111:377–389. https://doi.org/10.1016/0043-1648(86)90134-1

  34. Schmidt I, Wilhelm M (1987) Friction-induced martensitic transformation of hot-rolled austenitic Mn-steels. Int J Mater Res 78:127–130. https://doi.org/10.1016/0043-1648(86)90134-1

  35. Brodyanski A, Klein MW, Merz R, Smaga M, Beck T, Kopnarski M (2020) Microstructural changes caused by friction loading in high manganese TWIP steel and case-hardened 16MnCr5. Mater Charact 163:110231. https://doi.org/10.1016/j.matchar.2020.110231

  36. Rainforth WM, Stevens R, Nutting J (1992) Deformation structures induced by sliding contact. Philos Mag A 66(4):621–641. ISSN: 0141-8610. https://doi.org/10.1080/01418619208201580

  37. Riviére JP, Brin C, Villain JP (2003) Structure and topography modifications of austenitic steel surfaces after friction in sliding contact. Appl Phys Mater Sci & Process 76(2):277–283. ISSN: 0947-8396. https://doi.org/10.1007/s00339-002-1481-x

  38. Fargas G, Roa JJ, Mateo A (2016) Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear 364-365:40–47. ISSN: 00431648. https://doi.org/10.1016/j.wear.2016.06.018

  39. Kim Y-S, Kim S-D, Kim S-J (2007) Effect of phase transformation on wear of high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel. Mater Sci Eng A 449-451:1075–1078. ISSN: 09215093. https://doi.org/10.1016/j.msea.2006.02.294

  40. Hua M, Xicheng W, Jian L (2008) Friction and wear behavior of SUS 304 austenitic stainless steel against Al2O3 ceramic ball under relative high load. Wear 265(5–6):799–810. ISSN: 00431648. https://doi.org/10.1016/j.wear.2008.01.017

  41. Alabd Alhafez I, Brodyanski A, Kopnarski M, Urbassek HM (2017) Influence of tip geometry on nanoscratching. Tribol Lett 65:1. https://doi.org/10.1007/s11249-016-0804-6

  42. Bowden FP, Tabor D (1967) Friction, lubrication and wear: a survey of work during the last decade. Wear 10(3):245. https://doi.org/10.1016/0043-1648(67)90008-7

  43. Kramer HS, Starke P, Klein M, Eifler D (2014) Cyclic hardness test PHYBALCHT—Short-time procedure to evaluate fatigue properties of metallic materials. Int J Fatigue 63:78–84. ISSN: 01421123. https://doi.org/10.1016/j.ijfatigue.2014.01.009

  44. Basa A, Thaulow C, Barnoush A (2014) Chemically induced phase transformation in austenite by focused ion beam. Metall Mater Trans A 45(3):1189–1198. https://doi.org/10.1007/s11661-013-2101-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marek Smaga or Tilmann Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smaga, M., Beck, T., Kopnarski, M., Merz, R., de Payrebrune, K.M., Wolke, S. (2024). Influence of Surface Morphology on Fatigue and Tribological Behavior of TRIP/TWIP Steels. In: Aurich, J.C., Hasse, H. (eds) Component Surfaces. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-35575-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35575-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35574-5

  • Online ISBN: 978-3-031-35575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics