Skip to main content

Metabolic Regulation of Kisspeptin

  • Chapter
  • First Online:
Book cover Kisspeptin Signaling in Reproductive Biology

Abstract

Body energy balance and metabolic signals are important modulators of puberty and reproductive function, so that perturbations of metabolism and energy reserves (ranging from persistent energy insufficiency to morbid obesity) are frequently linked to reproductive disorders. The mechanisms for the tight association between body metabolic state and reproduction are multifaceted, and likely involve numerous peripheral hormones and central transmitters. In recent years, a prominent role of kisspeptins in the central pathways responsible for conveying metabolic information into the brain centers responsible for reproductive control, and specifically GnRH neurons, has been proposed on the basis of a wealth of expression and functional data. In this chapter, we will summarize such evidence, with special attention to the potential (direct and/or indirect) interaction of leptin and kisspeptin pathways. In addition, other potential metabolic modulators of kisspeptin signaling, as well as some of the putative molecular mechanisms for the metabolic regulation of Kiss1 will be briefly reviewed. Conflictive data, including those questioning an essential role of Kiss1 neurons in mediating leptin effects on the reproductive axis, will be also discussed. All in all, we aim to provide an integral and balanced view of the physiological relevance and potential mechanisms for the metabolic control of the kisspeptin system, as important pathway for the integral regulation of energy balance, puberty onset, and fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz NB (2000) Neuroendocrine regulation of reproductive cyclicity. In: Conn PM, Freeman ME (eds) Neuroendocrinology in physiology and medicine, vol. Humana, Totowa, NJ, pp 135–146

    Google Scholar 

  2. Tena-Sempere M, Huhtaniemi I (2003) Gonadotropins and gonadotropin receptors. In: Fauser BCJM (ed) Reproductive medicine—molecular, cellular and genetic fundamentals, vol. Partenon Publishing, New York, pp 225–244

    Google Scholar 

  3. Fernandez-Fernandez R, Martini AC, Navarro VM, Castellano JM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Novel signals for the integration of energy balance and reproduction. Mol Cell Endocrinol 254–255:127–132

    Article  PubMed  Google Scholar 

  4. Tena-Sempere M (2007) Roles of ghrelin and leptin in the control of reproductive function. Neuroendocrinology 86:229–241

    Article  PubMed  CAS  Google Scholar 

  5. Kennedy GC, Mitra J (1963) Body weight and food intake as initiating factors for puberty in the rat. J Physiol 166:408–418

    PubMed  CAS  Google Scholar 

  6. Frisch RE, Revelle R (1970) Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 169:397–399

    Article  PubMed  CAS  Google Scholar 

  7. Frisch RE, McArthur JW (1974) Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science 185:949–951

    Article  PubMed  CAS  Google Scholar 

  8. Casanueva FF, Dieguez C (1999) Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol 20:317–363

    Article  PubMed  CAS  Google Scholar 

  9. Tena-Sempere M (2008) Ghrelin as a pleotrophic modulator of gonadal function and ­reproduction. Nat Clin Pract Endocrinol Metab 4:666–674

    Article  PubMed  CAS  Google Scholar 

  10. Castellano JM, Roa J, Luque RM, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2009) KiSS-1/kisspeptins and the metabolic control of reproduction: physiologic roles and putative physiopathological implications. Peptides 30:139–145

    Article  PubMed  CAS  Google Scholar 

  11. Roa J, Garcia-Galiano D, Castellano JM, Gaytan F, Pinilla L, Tena-Sempere M (2010) Metabolic control of puberty onset: new players, new mechanisms. Mol Cell Endocrinol 324:87–94

    Article  PubMed  CAS  Google Scholar 

  12. True C, Kirigiti MA, Kievit P, Grove KL, Susan Smith M (2011) Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance. J Neuroendocrinol 23:1099–1112

    Article  PubMed  CAS  Google Scholar 

  13. Szymanski LA, Schneider JE, Friedman MI, Ji H, Kurose Y, Blache D, Rao A, Dunshea FR, Clarke IJ (2007) Changes in insulin, glucose and ketone bodies, but not leptin or body fat content precede restoration of luteinising hormone secretion in ewes. J Neuroendocrinol 19:449–460

    Article  PubMed  CAS  Google Scholar 

  14. Cunningham MJ, Clifton DK, Steiner RA (1999) Leptin’s actions on the reproductive axis: perspectives and mechanisms. Biol Reprod 60:216–222

    Article  PubMed  CAS  Google Scholar 

  15. Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM (2009) Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 150:2805–2812

    Article  PubMed  CAS  Google Scholar 

  16. Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain. Endocr Rev 30:713–743

    Article  PubMed  CAS  Google Scholar 

  17. Roa J, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2008) New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol 29:48–69

    Article  PubMed  CAS  Google Scholar 

  18. Simonneaux V, Ansel L, Revel FG, Klosen P, Pevet P, Mikkelsen JD (2009) Kisspeptin and the seasonal control of reproduction in hamsters. Peptides 30:146–153

    Article  PubMed  CAS  Google Scholar 

  19. Tena-Sempere M (2006) KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility. Neuroendocrinology 83:275–281

    Article  PubMed  CAS  Google Scholar 

  20. Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2005) Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 146:3917–3925

    Article  PubMed  CAS  Google Scholar 

  21. Brown RE, Imran SA, Ur E, Wilkinson M (2008) KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Mol Cell Endocrinol 281:64–72

    Article  PubMed  CAS  Google Scholar 

  22. Matsuzaki T, Iwasa T, Kinouchi R, Yoshida S, Murakami M, Gereltsetseg G, Yamamoto S, Kuwahara A, Yasui T, Irahara M (2011) Fasting reduces the kiss1 mRNA levels in the caudal hypothalamus of gonadally intact adult female rats. Endocr J 58:1003–1012

    Article  PubMed  CAS  Google Scholar 

  23. Luque RM, Kineman RD, Tena-Sempere M (2007) Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology 148:4601–4611

    Article  PubMed  CAS  Google Scholar 

  24. Castellano JM, Navarro VM, Fernandez-Fernandez R, Roa J, Vigo E, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2006) Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes 55:2602–2610

    Article  PubMed  CAS  Google Scholar 

  25. Castellano JM, Navarro VM, Roa J, Pineda R, Sanchez-Garrido MA, Garcia-Galiano D, Vigo E, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2009) Alterations in hypothalamic KiSS-1 system in experimental diabetes: early changes and functional consequences. Endocrinology 150:784–794

    Article  PubMed  CAS  Google Scholar 

  26. Smith JT, Acohido BV, Clifton DK, Steiner RA (2006) KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 18:298–303

    Article  PubMed  CAS  Google Scholar 

  27. Roa J, Garcia-Galiano D, Varela L, Sanchez-Garrido MA, Pineda R, Castellano JM, Ruiz-Pino F, Romero M, Aguilar E, Lopez M, Gaytan F, Dieguez C, Pinilla L, Tena-Sempere M (2009) The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 150:5016–5026

    Article  PubMed  CAS  Google Scholar 

  28. Kalamatianos T, Grimshaw SE, Poorun R, Hahn JD, Coen CW (2008) Fasting reduces KiSS-1 expression in the anteroventral periventricular nucleus (AVPV): effects of fasting on the expression of KiSS-1 and neuropeptide Y in the AVPV or arcuate nucleus of female rats. J Neuroendocrinol 20:1089–1097

    Article  PubMed  CAS  Google Scholar 

  29. True C, Kirigiti M, Ciofi P, Grove KL, Smith MS (2011) Characterisation of arcuate nucleus kisspeptin/neurokinin B neuronal projections and regulation during lactation in the rat. J Neuroendocrinol 23:52–64

    Article  PubMed  CAS  Google Scholar 

  30. Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S, Li Q, Clarke IJ (2010) Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 151:2233–2243

    Article  PubMed  Google Scholar 

  31. Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M (2010) Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 1364:129–138

    Article  PubMed  CAS  Google Scholar 

  32. Castellano JM, Bentsen AH, Romero M, Pineda R, Ruiz-Pino F, Garcia-Galiano D, Sanchez-­Garrido MA, Pinilla L, Mikkelsen JD, Tena-Sempere M (2010) Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects. Am J Physiol Endocrinol Metab 299:E54–E61

    Article  PubMed  CAS  Google Scholar 

  33. Rachon D, Teede H (2010) Ovarian function and obesity—interrelationship, impact on women’s reproductive lifespan and treatment options. Mol Cell Endocrinol 316:172–179

    Article  PubMed  CAS  Google Scholar 

  34. Biro FM, Wien M (2010) Childhood obesity and adult morbidities. Am J Clin Nutr 91:1499S–1505S

    Article  PubMed  Google Scholar 

  35. Ahmed ML, Ong KK, Dunger DB (2009) Childhood obesity and the timing of puberty. Trends Endocrinol Metab 20:237–242

    Article  PubMed  CAS  Google Scholar 

  36. Loret de Mola JR (2009) Obesity and its relationship to infertility in men and women. Obstet Gynecol Clin North Am 36:333–346, ix

    Article  PubMed  Google Scholar 

  37. Garcia-Galiano D, Pinilla L, Tena-Sempere M (2012) Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol 24:22–33

    Article  PubMed  CAS  Google Scholar 

  38. Quennell JH, Howell CS, Roa J, Augustine RA, Grattan DR, Anderson GM (2011) Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 152:1541–1550

    Article  PubMed  CAS  Google Scholar 

  39. Castellano JM, Bentsen AH, Sanchez-Garrido MA, Ruiz-Pino F, Romero M, Garcia-Galiano D, Aguilar E, Pinilla L, Dieguez C, Mikkelsen JD, Tena-Sempere M (2011) Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 152:3396–3408

    Article  PubMed  CAS  Google Scholar 

  40. Smith JT, Spencer SJ (2012) Preweaning over- and underfeeding alters onset of puberty in the rat without affecting kisspeptin. Biol Reprod 86(145):141–148

    Google Scholar 

  41. George JT, Millar RP, Anderson RA (2010) Hypothesis: kisspeptin mediates male hypogonadism in obesity and type 2 diabetes. Neuroendocrinology 91:302–307

    Article  PubMed  CAS  Google Scholar 

  42. Tovar S, Vazquez MJ, Navarro VM, Fernandez-Fernandez R, Castellano JM, Vigo E, Roa J, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M (2006) Effects of single or repeated intravenous administration of kisspeptin upon dynamic LH secretion in conscious male rats. Endocrinology 147:2696–2704

    Article  PubMed  CAS  Google Scholar 

  43. Roa J, Vigo E, Garcia-Galiano D, Castellano JM, Navarro VM, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M (2008) Desensitization of gonadotropin responses to kisspeptin in the female rat: analyses of LH and FSH secretion at different developmental and metabolic states. Am J Physiol Endocrinol Metab 294:E1088–E1096

    Article  PubMed  CAS  Google Scholar 

  44. Wahab F, Aziz F, Irfan S, Zaman WU, Shahab M (2008) Short-term fasting attenuates the response of the HPG axis to kisspeptin challenge in the adult male rhesus monkey (Macaca mulatta). Life Sci 83:633–637

    Article  PubMed  CAS  Google Scholar 

  45. Hill JW, Elmquist JK, Elias CF (2008) Hypothalamic pathways linking energy balance and reproduction. Am J Physiol Endocrinol Metab 294:E827–E832

    Article  PubMed  CAS  Google Scholar 

  46. Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J Jr, Atkin S, Bookout AL, Rovinsky S, Frazao R, Lee CE, Gautron L, Zigman JM, Elias CF (2011) Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 173:37–56

    Article  PubMed  CAS  Google Scholar 

  47. Morelli A, Marini M, Mancina R, Luconi M, Vignozzi L, Fibbi B, Filippi S, Pezzatini A, Forti G, Vannelli GB, Maggi M (2008) Sex steroids and leptin regulate the “first Kiss” (KiSS 1/G-protein-coupled receptor 54 system) in human gonadotropin-releasing-hormone-secreting neuroblasts. J Sex Med 5:1097–1113

    Article  PubMed  CAS  Google Scholar 

  48. Qiu J, Fang Y, Bosch MA, Ronnekleiv OK, Kelly MJ (2011) Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 152:1503–1514

    Article  PubMed  CAS  Google Scholar 

  49. Donato J Jr, Cravo RM, Frazao R, Gautron L, Scott MM, Lachey J, Castro IA, Margatho LO, Lee S, Lee C, Richardson JA, Friedman J, Chua S Jr, Coppari R, Zigman JM, Elmquist JK, Elias CF (2011) Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 121:355–368

    Article  PubMed  Google Scholar 

  50. Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG Jr (2011) Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152:2302–2310

    Article  PubMed  CAS  Google Scholar 

  51. Tena-Sempere M, Barreiro ML (2002) Leptin in male reproduction: the testis paradigm. Mol Cell Endocrinol 188:9–13

    Article  PubMed  CAS  Google Scholar 

  52. Welt CK (2007) Will leptin become the treatment of choice for functional hypothalamic amenorrhea? Nat Clin Pract Endocrinol Metab 3:556–557

    Article  PubMed  CAS  Google Scholar 

  53. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351:987–997

    Article  PubMed  CAS  Google Scholar 

  54. Chou SH, Chamberland JP, Liu X, Matarese G, Gao C, Stefanakis R, Brinkoetter MT, Gong H, Arampatzi K, Mantzoros CS (2011) Leptin is an effective treatment for hypothalamic amenorrhea. Proc Natl Acad Sci U S A 108:6585–6590

    Article  PubMed  CAS  Google Scholar 

  55. Jayasena CN, Nijher GM, Chaudhri OB, Murphy KG, Ranger A, Lim A, Patel D, Mehta A, Todd C, Ramachandran R, Salem V, Stamp GW, Donaldson M, Ghatei MA, Bloom SR, Dhillo WS (2009) Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. J Clin Endocrinol Metab 94:4315–4323

    Article  PubMed  CAS  Google Scholar 

  56. Donato J Jr, Silva RJ, Sita LV, Lee S, Lee C, Lacchini S, Bittencourt JC, Franci CR, Canteras NS, Elias CF (2009) The ventral premammillary nucleus links fasting-induced changes in leptin levels and coordinated luteinizing hormone secretion. J Neurosci 29:5240–5250

    Article  PubMed  CAS  Google Scholar 

  57. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  PubMed  CAS  Google Scholar 

  58. Chiang GG, Abraham RT (2007) Targeting the mTOR signaling network in cancer. Trends Mol Med 13:433–442

    Article  PubMed  CAS  Google Scholar 

  59. Tsang CK, Qi H, Liu LF, Zheng XF (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 12:112–124

    Article  PubMed  CAS  Google Scholar 

  60. Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166

    Article  PubMed  CAS  Google Scholar 

  61. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  62. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930

    Article  PubMed  CAS  Google Scholar 

  63. Woods SC, Seeley RJ, Cota D (2008) Regulation of food intake through hypothalamic signaling networks involving mTOR. Annu Rev Nutr 28:295–311

    Article  PubMed  CAS  Google Scholar 

  64. Altarejos JY, Goebel N, Conkright MD, Inoue H, Xie J, Arias CM, Sawchenko PE, Montminy M (2008) The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med 14:1112–1117

    Article  PubMed  CAS  Google Scholar 

  65. Breuillaud L, Halfon O, Magistretti PJ, Pralong FP, Cardinaux JR (2009) Mouse fertility is not dependent on the CREB coactivator Crtc1. Nat Med 15:989–990; author reply 991

    Article  PubMed  CAS  Google Scholar 

  66. Caron E, Ciofi P, Prevot V, Bouret SG (2012) Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J Neurosci 32:11486–11494

    Article  PubMed  CAS  Google Scholar 

  67. Iwasa T, Matsuzaki T, Murakami M, Fujisawa S, Kinouchi R, Gereltsetseg G, Kuwahara A, Yasui T, Irahara M (2010) Effects of intrauterine undernutrition on hypothalamic Kiss1 expression and the timing of puberty in female rats. J Physiol 588:821–829

    Article  PubMed  CAS  Google Scholar 

  68. Iwasa T, Matsuzaki T, Murakami M, Kinouchi R, Gereltsetseg G, Fujisawa S, Kuwahara A, Yasui T, Irahara M (2010) Sensitivities of mRNA expression levels of Kiss1 and its receptor, Kiss1r, to nutritional status are changed during the developmental period in female rats. J Endocrinol 207:195–202

    Article  PubMed  CAS  Google Scholar 

  69. Fernandez-Fernandez R, Navarro VM, Barreiro ML, Vigo EM, Tovar S, Sirotkin AV, Casanueva FF, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005) Effects of chronic hyperghrelinemia on puberty onset and pregnancy outcome in the rat. Endocrinology 146:3018–3025

    Article  PubMed  CAS  Google Scholar 

  70. Kalra SP, Crowley WR (1992) Neuropeptide Y: a novel neuroendocrine peptide in the control of pituitary hormone secretion, and its relation to luteinizing hormone. Front Neuroendocrinol 13:1–46

    PubMed  CAS  Google Scholar 

  71. Pralong FP (2010) Insulin and NPY pathways and the control of GnRH function and puberty onset. Mol Cell Endocrinol 324:82–86

    Article  PubMed  CAS  Google Scholar 

  72. Xu J, Kirigiti MA, Cowley MA, Grove KL, Smith MS (2009) Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y. Endocrinology 150:333–340

    Article  PubMed  CAS  Google Scholar 

  73. Kalra SP, Kalra PS (2004) NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 38:201–211

    Article  PubMed  CAS  Google Scholar 

  74. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG (1996) Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98:1101–1106

    Article  PubMed  CAS  Google Scholar 

  75. Backholer K, Smith J, Clarke IJ (2009) Melanocortins may stimulate reproduction by activating orexin neurons in the dorsomedial hypothalamus and kisspeptin neurons in the preoptic area of the ewe. Endocrinology 150:5488–5497

    Article  PubMed  CAS  Google Scholar 

  76. Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M (2009) Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 106:17217–17222

    Article  PubMed  CAS  Google Scholar 

  77. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR (2004) Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-­pituitary-gonadal axis. J Neuroendocrinol 16:850–858

    Article  PubMed  CAS  Google Scholar 

  78. Fu LY, van den Pol AN (2010) Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. J Neurosci 30:10205–10219

    Article  PubMed  CAS  Google Scholar 

  79. Stengel A, Wang L, Goebel-Stengel M, Tache Y (2011) Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport 22:253–257

    Article  PubMed  CAS  Google Scholar 

  80. Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE (2012) Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 153:2800–2812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted with the members of the research team at the Physiology Section of the University of Cordoba, who actively participated in the generation of experimental data discussed herein. The work from the authors’ laboratory summarized in this article was supported by grants BFU 2005-07446, BFU 2008-00984, and BFU2011-­25021 (Ministerio de Economía and Competitividad, Spain; covered in part by EU-FEDER funds), grants from Instituto de Salud Carlos III (Red de Centros RCMN C03/08 and Project PI042082; Ministerio de Sanidad, Spain), and EU research contracts EDEN QLK4-CT-2002-00603 and DEER FP7-­ENV-2007-1. CIBER is an initiative of Instituto de Salud Carlos III (Ministerio de Sanidad, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Tena-Sempere M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castellano, J.M., Tena-Sempere, M. (2013). Metabolic Regulation of Kisspeptin. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_17

Download citation

Publish with us

Policies and ethics