Protective effect of small peptides from Periplaneta americana on cyclophosphamide-induced premature ovarian failure

J Obstet Gynaecol Res. 2022 Jan;48(1):188-199. doi: 10.1111/jog.15087. Epub 2021 Nov 2.

Abstract

Aim: To investigate the protective effect of small peptides from Periplaneta americana (SPPA) on cyclophosphamide (CP)-induced premature ovarian failure (POF) in mice. Silent mating type information regulation 2 homolog 1 (SIRT1) /tumor-associated protein 53 (p53) signaling pathway plays an important role in delaying POF. Hematopoietic progenitor cell antigen (CD34) reflects ovarian aging from the side. However, whether SPPA inhibits POF in mice by influencing the SIRT1/p53 pathway and CD34 expression remains to be studied.

Methods: Forty female Kun Ming (KM) mice were divided into four groups: a control group (normal saline, n = 10), POF model group (160 mg/kg CP, n = 10), SPPA low-dosage group (160 mg/kg CP + 100 mg/kg SPPA, n = 10), and SPPA high-dosage group (160 mg/kg CP + 200 mg/kg SPPA, n = 10). CP administration route is intraperitoneal injection, and SPPA administration route is intragastric. Eyeball enucleation blood samples and the ovaries of mice were collected by midline laparatomy and oopherectomy, and the malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), follicle-stimulating hormone (FSH), and anti-Müllerian hormone (AMH) concentrations were tested. Immunohistochemical tests for the expressions of SIRT1, p53, and CD34 were carried out. Finally, ovarian mRNA levels of SIRT1 and p53 were detected with real-time fluorescence quantification PCR (qRT-PCR).

Results: A mouse model of POF was generated using 160 mg/kg of CP. Compared with POF group, we found that plasma NO, MDA, and FSH decreased, while AMH and SOD increased in the SPPA low-dose group. Compared with the POF group, the SPPA low- and high-dosage groups achieved significant growth in the number of primordial, primary, and total number of healthy follicles at all levels, but sharp reductions in the number of atretic follicles. In addition, we found downregulated protein and mRNA expression of SIRT1, and upregulated that of p53 were observed in ovarian tissues of treated mice with POF, in immunohistochemistry experiments and qPCR experiments. In contrast, high protein and mRNA expression of SIRT1, and low that of p53 were observed in SPPA treatment groups. And the results of CD34 protein expression were consistent with that of SIRT1.

Conclusion: In total, SPPA significantly inhibited POF caused by CP in mice via activation of the SIRT1/p53 signaling pathway in the mouse ovary.

Keywords: SIRT1/p53 signaling pathway; cyclophosphamide; mice; premature ovarian failure; small peptides from Periplaneta americana.

MeSH terms

  • Animals
  • Cyclophosphamide
  • Female
  • Menopause, Premature*
  • Mice
  • Peptides
  • Periplaneta*
  • Primary Ovarian Insufficiency* / chemically induced
  • Primary Ovarian Insufficiency* / prevention & control

Substances

  • Peptides
  • Cyclophosphamide